Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-22T17:13:28.813Z Has data issue: false hasContentIssue false

Study on the mitochondrial apoptosis pathways of small cell lung cancer H446 cells induced by Trichinella spiralis muscle larvae ESPs

Published online by Cambridge University Press:  11 January 2017

JINGMEI LUO
Affiliation:
Department of Pathogenic Biology, Chengde Medical University, Chengde 06700, Hebei, China
LI YU
Affiliation:
Department of Pathogenic Biology, Chengde Medical University, Chengde 06700, Hebei, China
GUANGCHENG XIE
Affiliation:
Department of Pathogenic Biology, Chengde Medical University, Chengde 06700, Hebei, China
DAN LI
Affiliation:
Department of Pathogenic Biology, Chengde Medical University, Chengde 06700, Hebei, China
MENG SU
Affiliation:
Department of Pathogenic Biology, Chengde Medical University, Chengde 06700, Hebei, China
XUERONG ZHAO
Affiliation:
Department of Immunology, Chengde Medical University, Chengde 06700, Hebei, China
LUANYING DU*
Affiliation:
Department of Pathogenic Biology, Chengde Medical University, Chengde 06700, Hebei, China
*
*Corresponding author: Luan-ying Du, Department of Pathogenic Biology, Chengde Medical University, Chengde 06700, Hebei, China. E-mail: [email protected]

Summary

Trichinella spiralis (T.spiralis) muscle-larva (ML) excretory–secretory proteins (ESPs) contain antitumour-active substances. ESPs have been shown to inhibit tumour growth. To explore the effects of these proteins on small cell lung cancer cells and the possible mechanisms of their antineoplastic action, H446 SCLC cells were co-cultured with different concentrations of T. spiralis ML ESPs for 12, 24 and 48 h. Our results showed that T. spiralis ML ESPs significantly inhibited H446 cell proliferation, which was dose-and time-dependent. The results of flow cytometry testing indicate a clear apoptosis trend in H446 cells co-cultured with ESPs for 24 h. Reverse transcription polymerase chain reaction and Western blotting results showed increased expression of pro-apoptosis genes Bax, Cyt-C, Apaf-1, caspase-9 and caspase-3, compared with the negative control group, and decreased the expression of anti-apoptosis genes Bcl-2 and Livin. Our results suggest that T. spiralis ML ESPs can induce apoptosis in H446 cells through a mitochondrial pathway, which may be a mechanism of antineoplastic action in T. spiralis ML ESPs.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Altundag, K., Esteva, F. J. and Arun, B. (2005). Monoclonal antibody-based targeted therapy in breast cancer. Current Medicinal Chemistry – Anticancer Agents 5, 99106.Google Scholar
Appleton, J. A., Schain, L. R. and McGregor, D. D. (1988). Rapid expulsion of Trichinella spiralis in suckling rats: mediation by monoclonal antibodies. Immunology 65, 487492.Google Scholar
Beiting, D. P., Bliss, S. K., Schlafer, D. H., Roberts, V. L. and Appleton, J. A. (2004). Interleukin-10 limits local and body cavity inflammation during infection with muscle-stage Trichinella spiralis . Infection and Immunity 72, 31293137.Google Scholar
Byers, L. A. and Rudin, C. M. (2015). Small cell lung cancer: where do we go from here? Cancer 121, 664672.Google Scholar
Cazzoli, R., Buttitta, F., Di Nicola, M., Malatesta, S., Marchetti, A., Rom, W. N. and Pass, H. I. (2013). MicroRNAs derived from circulating exosomes as non-invasive biomarkers for screening and diagnose lung cancer. Journal of Thoracic Oncology 8, 11561162.Google Scholar
Darani, H. Y., Shirzad, H., Mansoori, F., Zabardast, N. and Mahmoodzadeh, M. (2009). Effects of Toxoplasma gondii and Toxocara canis antigens on WEHI-164 fibrosarcoma growth in a mouse model. Korean Journal of Parasitology 47, 175177.Google Scholar
Deng, B., Gong, P., Li, J., Cheng, B., Ren, W., Yang, J., Li, H., Zhang, G. and Zhang, X. (2013). Identification of the differentially expressed genes in SP2/0 myeloma cells from Balb/c mice infected with Trichinella spiralis . Veterinary Parasitology 194, 179182.Google Scholar
Di Marco, M., Grassi, E., Durante, S., Vecchiarelli, S., Palloni, A., Macchini, M., Casadei, R., Ricci, C., Panzacchi, R., Santini, D. and Biasco, G. (2016). State of the art biological therapies in pancreatic cancer. World Journal of Gastrointestinal Oncology 8, 5566.Google Scholar
Duan, L., Li, J., Cheng, B., Lv, Q., Gong, P. T., Su, L. B., Cai, Y. and Zhang, X. (2013). Identification of a novel gene product expressed by Trichinella spiralis that binds antiserum to Sp2/0 myeloma cells. Veterinary Parasitology 194, 183185.Google Scholar
Eng, C. and Shalan, N. (2006). Biological agents versus chemotherapy in the treatment of colorectal cancer. Expert Opinion on Pharmacotherapy 7, 12511271.CrossRefGoogle ScholarPubMed
Govindan, R., Page, N., Morgensztern, D., Read, W., Tierney, R., Vlahiotis, A., Spitznagel, E. L. and Piccirillo, J. (2006). Changing epidemiology of small-cell lung cancer in the United States over the last 30 years: analysis of the surveillance, epidemiologic, and end results database. Journal of Clinical Oncology 24, 45394544.CrossRefGoogle ScholarPubMed
Hann, C. L. and Rudin, C. M. (2008). Management of small-cell lung cancer: incremental changes but hope for the future. Oncology (Williston Park) 22, 14861492.Google Scholar
Kallinikova, V. D., Matekin, P. V., Ogloblina, T. A., Leĭkina, M. I., Kononenko, A. F., Sokolova, N. M. and Pogodina, L. S. (2001). Anticancer properties of flagellate protozoan Trypanosoma cruzi Chagas, 1909. Izvestiia Akademii Nauk. Seriia biologicheskaia 3, 299311.Google Scholar
Kang, Y. J., Jo, J. O., Cho, M. K., Yu, H. S., Leem, S. H., Song, K. S., Ock, M. S. and Cha, H. J. (2013). Trichinella spiralis infection reduces tumor growth and metastasis of B16-F10 melanoma cells. Veterinary Parasitology 196, 106113.Google Scholar
Kim, J. O., Jung, S. S., Kim, S. Y., Kim, T. Y., Shin, D. W., Lee, J. H. and Lee, Y. H. (2007). Inhibition of Lewis lung carcinoma growth by Toxoplasma gondii through induction of Th1 immune responses and inhibition of angiogenesis. Journal of Korean Medical Science 22(Suppl), S38S46.CrossRefGoogle ScholarPubMed
Lee, S. R., Yoo, S. H., Kim, H. S., Lee, S. H. and Seo, M. (2013). Trichinosis caused by ingestion of raw soft-shelled turtle meat in Korea. Korean Journal of Parasitology 51, 219221.Google Scholar
Liu, Y. J., Xu, J., Huang, H. Y. and Xu, G. Q. (2015). Inhibitory effect of the excretory/secretory proteins of Trichinella spiralis on proliferation of human hepatocellular carcinoma HepG2 cell line. Zhongguo Ji Sheng Chong Xue Yu Ji Sheng Chong Bing Za Zhi 33, 315317.Google Scholar
Lubiniecki, A. S. and Cypess, R. H. (1975). Quantitative study of the effect of previous Trichinella spiralis infection on sarcoma 180 ascitic tumor formation in mice. Tropenmedizin und Parasitologie 26, 329334.Google Scholar
Luo, J. M., Cheng, L. Y., Guan, X. D., Li, D., Yu, L. and Du, L. Y. (2016). LC-MS/MS analysis of components of excretory-secretory protein of Trichinella spiralis muscle larvae. Zhongguo Ji Sheng Chong Xue Yu Ji Sheng Chong Bing Za Zhi 34, 5357.Google Scholar
Molinari, J. A. and Ebersole, J. L. (1977). Antineoplastic effects of long-term Trichinella spiralis infection on B-16 melanoma. International Archives of Allergy and Applied Immunology 55, 444448.Google Scholar
Molinari, J. A., Carrick, L. Jr. and Lubiniecki, A. S. (1979). Influence of Trichinella spiralis infection on development of sarcoma-180 ascites tumors. Tropenmedizin und Parasitologie 30, 429433.Google Scholar
Rodriguez, J. and Lazebnik, Y. (1999). Caspase-9 and APAF-1 form an active holoenzyme. Genes & Development 13, 31793184.CrossRefGoogle ScholarPubMed
Seyedeh, M. S., Nahid, S., Nahid, M., Shima, D. P., Morteza, Y. and Hossein, Y. D. (2015). Low titer of antibody against Toxoplasma gondii may be related to resistant to cancer. Journal of Cancer Research and Therapeutics 11, 305307.Google Scholar
Sharp, A., Bhosle, J., Abdelraouf, F., Popat, S., O'Brien, M. and Yap, T. A. (2016). Development of molecularly targeted agents and immunotherapies in small cell lung cancer. European Journal of Cancer 60, 2639.Google Scholar
Siegel, R., Ward, E., Brawley, O. and Jemal, A. (2011). Cancer statistics 2011: the impact of eliminating socioeconomic and racial disparities on premature cancer deaths. CA: a Cancer Journal for Clinicians 61, 212236.Google Scholar
Ubillos, L., Freire, T., Berriel, E., Chiribao, M. L., Chiale, C., Festari, M. F., Medeiros, A., Mazal, D., Rondán, M., Bollati-Fogolín, M., Rabinovich, G. A., Robello, C. and Osinaga, E. (2016). Trypanosoma cruzi extracts elicit protective immune response against chemically induced colon and mammary cancers. International Journal of Cancer 138, 17191731.Google Scholar
Vasilev, S., Ilic, N., Gruden-Movsesijan, A., Vasilijic, S., Bosic, M. and Sofronic-Milosavljevic, L. (2015). Necrosis and apoptosis in Trichinella spiralis-mediated tumour reduction. Central European Journal of Immunology 40, 4253.Google Scholar
Wang, X. L., Fu, B. Q., Yang, S. J., Wu, X. P., Cui, G. Z., Liu, M. F., Zhao, Y., Yu, Y. L., Liu, X. Y., Deng, H. K., Chen, Q. J. and Liu, M. Y. (2009). Trichinella spiralis – a potential anti-tumor agent. Veterinary Parasitology 159, 249–52.Google Scholar
Wang, X. L., Liu, M. Y., Sun, S. M., Liu, X. L., Yu, L., Wang, X. R., Chu, L. X., Rosenthal, B., Shi, H. N., Boireau, P., Wang, F., Zhao, Y. and Wu, X. P. (2013). An anti-tumor protein produced by Trichinella spiralis induces apoptosis in human hepatoma H7402 cells. Veterinary Parasitology 194, 186188.Google Scholar
Zou, H., Li, Y., Liu, X. and Wang, X. (1999). An APAF-1.cytochrome c multimeric complex is a functional apoptosome that activates procaspase-9. Journal of Biological Chemistry 274, 1154911556.CrossRefGoogle ScholarPubMed