Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-13T08:26:24.924Z Has data issue: false hasContentIssue false

Studies on the germ cell cycle of the digenetic trematode Parorchis acanthus Nicoll

Part I. Anatomy of the genitalia and gametogenesis in the adult

Published online by Cambridge University Press:  06 April 2009

Gwendolen Rees
Affiliation:
Department of Zoology, University College of Wales, Aberystwyth

Extract

1. The anatomy of the male and female genitalia of Parorchis acanthus is described in detail. An extensive receptaculum uterinum occurs in the female system.

2. The chromosome number in P. acanthus is twenty-two.

3. Spermatogenesis, oogenesis, and fertilization, are described in the adult worm. The chromosome number in both male and female cells is reduced to eleven at the first meiotic division.

4. Maturation in the female takes place in the “receptaculum uterinum”.

5. Cleavage of the ovum to the three cell stage has been followed.

6. The probable synonymy of P. acanthus and P. avitus is discussed.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1939

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Braun, M. (1902). Zool. Jb. Jena. Syst. 16, 146.Google Scholar
Brooks, F. G. (1928). Science, 68, 277–8.CrossRefGoogle Scholar
Brooks, F. G. (1930). Amer. J. Hyg. 12, 299340.Google Scholar
Cable, R. M. (1931). Quart. J. micr. Sci. 74, 563–89.Google Scholar
Cable, R. M. (1934). Quart. J. micr. Sci. 76, 573614.Google Scholar
Cary, L. R. (1909). Zool. Jb. Abt. Anat. Ont. 28, 595659.Google Scholar
Dingler, M. (1910). Arch. Zellforsch. 4, 672712.Google Scholar
Gille, K. (1914). Arch. Zellforsch. 12, 415–56.Google Scholar
Goldschmidt, R. (1902). Z. wiss. Zool. 71, 397444.Google Scholar
Goldschmidt, R. (1905). Zool. Jb. Abt. Anat. Ont. 21, 607–54.Google Scholar
Goldschmidt, R. (1908). Arch. Zellforsch. 1, 232–44.Google Scholar
Halkin, H. (1902). Arch. Biol. 18, 291363.Google Scholar
Kathariner, L. (1904). Zool. Jb. Gestschr. Weismann. Suppl. 7, 519–50.Google Scholar
Kemnitz, G. A. von (1913). Arch. Zellforsch. 10, 470506.Google Scholar
Levy, F. (1914). Arch. Mikr. Anat. 85, Drittes Heft, 125–34.CrossRefGoogle Scholar
Linder, E. (1914). Arch. Zellforsch. 12, 516–38.Google Scholar
Linton, E. (1914). Proc. U.S. Nat. Mus. Wash. 46, 551–5.CrossRefGoogle Scholar
Linton, E. (1929). Proc. U.S. Nat. Mus. Wash. 73, 136.Google Scholar
Nicoll, W. (1906). Ann. Mag. nat. Hist. (7), 17, 519–22.Google Scholar
Nicoll, W. (1907). Ann. Mag. nat. Hist. (7), 19, 128.CrossRefGoogle Scholar
Nicoll, W. (1907). Quart. J. micr. Sci. 51, 345–55.Google Scholar
Pennypacker, M. I. (1936). Arch. Biol. 47, 309–17.Google Scholar
Pin-Dji, Chen (1937). Trans. Amer. micr. Soc. 56, 208–36.Google Scholar
Rees, G. (1937). Proc. zool. Soc., Lond., B, Part I, pp. 6573.CrossRefGoogle Scholar
Schellenberg, A. (1911). Arch. Zellforsch. 6, 445–84.Google Scholar
Schubmann, W. (1905). Zool. Jb. Abt. Anat. Ont. 21, 571606.Google Scholar
Stunkard, & Shaw, (1931). Biol. Bull. Wood's Hole, 59, 242–71.CrossRefGoogle Scholar
Wassermann, F. (1913). Arch. Anat. Physiol. 6, 145–50.Google Scholar
White, M. (1937). The Chromosomes. Methuen and Co., Ltd.CrossRefGoogle Scholar
Woodhead, A. E. (1931). Trans. Amer. micr. Soc. 50, 169–87.CrossRefGoogle Scholar