Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2024-12-26T00:47:32.616Z Has data issue: false hasContentIssue false

Studies on Coprozoic Ciliates

Published online by Cambridge University Press:  06 April 2009

Cecil A. Hoare
Affiliation:
Protozoologist to the Wellcome Bureau of Scientific Research, London.

Extract

This paper contains a revision of the morphology and classification of three species of holotrichous ciliates, Lembus pusillus, Cyclidium glaucoma and Uronema nigricans (=Uronema marina Dujardin, 1841=Cryptochilum nigricans Maupas, 1883=U. marina et U. marinum auctorum, pro parte), together with various observations on their biology. The revised data on these species are summarised in the diagnoses preceding their description.

The close resemblance between U. nigricans and the other species described has led to its transfer from the family Chiliferidae to the family Pleuronemidae.

Cyst formation in L. pusillus is described for the first time. The cysts, when fully formed, are provided with a double-layered wall, to which the body of the ciliate is more or less closely adherent. When preserved in dry condition, the cysts retain the same structure and are able to hatch after several months. Excystation is brought about by active rupture of the cyst-wall on the part of the ciliate. The primary cyst does not, however, afford adequate protection to the ciliate in a fluid medium. After remaining in the latter about three weeks, the animal secretes a cyst of the second order, in which it remains viable some time longer, but if left in the fluid, the ciliate ultimately dies, gradually breaking up into a number of granules.

In order to establish the relationship of the marine and fresh-water forms of the same species, experiments on their acclimatisation to the opposite environment were conducted. The fresh-water U. nigricans adapted itself to pure sea water within 12 days and developed for 12 months in this medium, in which it is still being maintained. The marine U. nigricans was gradually transferred to fresh water, in which it was kept for 60 days. Observations on the morphological changes undergone by this ciliate in the course of acclimatisation show that the fresh-water forms living in sea water gradually acquire the habitus of the marine ones, and that the latter undergo the reverse change in fresh water. The characters distinguishing the two strains of U. nigricans being insignificant and transitory, the two forms are regarded as constituting a single species.

The fresh-water L. pusillus required eight days for acclimatisation to sea water, in which it was maintained for 163 days without exhibiting any morphological changes.

Attempts to acclimatise the fresh-water C. glaucoma to pure sea water failed, but in 50 per cent, sea water it grew for 130 days. The morphological and biological differences between the fresh-water and marine strains of C. glaucoma are probably sufficient for them to be regarded as sub-species or races.

Experiments were conducted on the cultivation of these ciliates in faecal matter from normal and diseased human subjects, and varying widely in consistency. Tests on the influence of the reaction of the medium upon the growth of the ciliates showed that they prefer a slightly alkaline medium (pH 7·4–8·0), but are able to tolerate an increase of alkalinity up to pH 9·0–10·0, whilst the acidification of the medium beyond pH 5·0 inhibits their growth.

As regards the facility with which these ciliates grew in faecal cultures, Lembus occupied the first place, having developed in the majority (64 per cent.) of samples of pure (i.e. undiluted) faeces, and in all those slightly diluted with water. The second place belongs to Uronema, which grew in all the diluted specimens and in one undiluted, whereas Cyclidium was unable to grow in pure faeces, but developed in about half of the diluted samples. All these ciliates were successfully cultivated in suspensions of human and animal faeces.

The coprozoic habits of the ciliates in question are compared with the records for “Uronema caudatum,” comprising a number of ciliates described by some authors as human intestinal parasites. It is shown that the conditions under which these ciliates were observed indicate that they were coprozoic forms that had contaminated the material examined. Though described under the name “U. caudatum” these ciliates represent at least two distinct genera, those recorded by Martini being similar to Cyclidium or Uronema, the ones described by Yakimoff et al. probably representing Lembus pusillus.

The last-named ciliarte having been originally found in a sample of canine faeces, experiments were carried out with the view of ascertaining its origin. It was demonstrated that the ciliate was unable to withstand incubation at 37°C. for 24 hours, and, when fed to mice in the form of cysts, did not survive the passage through their intestine. These facts indicate that the faeces in which Lembus was found must have been contaminated by this ciliate from outside.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1927

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alexeieff, A. (1917). Protistic coprology, as a special branch of Protistology, together with a description of some new species of Protista—“Coprocolae.” Journ. de Microbiol. (Pétrograd), 4, 97. [In Russian.]Google Scholar
Alexeieff, A. [1926]. A propos des Protozoaires du sol: existent-ils réellement? Copro-protistologie. Arch. Russ. Protistol. 4, 1925, 127.Google Scholar
Auerbach, L. (1854). Ueber Encystirung von Oxytricha Pellionella. Zeitschr. wiss. Zool. 5, 430.Google Scholar
Balbiani, E. G. (1899). Études sur l'action des sels sur les infusoires. Arch. Anat. Micr. 2, 518.Google Scholar
Blochmann, F. (1886). Die mikroskopische Thierwelt des Süsswassers. (Braunschweig.)CrossRefGoogle Scholar
Blochmann, F. (1895). Arch. Anat. Micr. 2nd ed. (Hamburg.)Google Scholar
Bodine, J. H. (1923). Excystation of Colpoda cucullus. Journ. Exp. Zool. 37, 115.CrossRefGoogle Scholar
Bresslau, E. (1921). Die Gelatinierbarkeit des Protoplasmas als Grundlage eines Verfahrens zur Schnellauffertigung gefarbter Dauerpräparate von Infusorien. Arch. f. Protistenk. 43, 467.Google Scholar
Buddenbrock, W. Von (1920). Beobachtungen über einige neue oder wenig bekannte marine Infusorien. Arch. f. Protistenk. 41, 341.Google Scholar
Buisson, J. (1923). Les infusoires ciliés du tube digestif de l'homme et des mammifères. (Trav. Lab. Parasitol. Fac. Méd. Paris.) (Diss.)Google Scholar
Bütschli, O. (18871889). Protozoa. III. Abth.—Infusoria. In Bronn's Klaus, u. Ordn. d. Thier-Reichs. (Leipzig.)Google Scholar
Calkins, G. N. (1902). Marine Protozoa from Woods Hole. Bull. U.S. Fish Comm. 21, 413.Google Scholar
Cépède, C. (1910). Recherches sur les infusoires astomes. Arch. Zool. Exp. et Gén. (5e sér.), 3, 341.Google Scholar
Chambers, R. and Dawson, J. A. (1925). The Structure of the Undulating Membrane in the ciliate Blepharisma. Biol. Bull. 48, 240.CrossRefGoogle Scholar
Chatton, E. (1913). Culture de quelques protistes marins. Amibes cystigènes et acystigènes. C.R. Soc. Biol. 75, 178.Google Scholar
Claparède, E. and Lachmann, J. (1859). Études sur les infusoires et les rhizopodes, 1, 1858–1859. (Genéve.)Google Scholar
Cohn, F. (1853). Beiträge zur Entwickelungsgeschichte der Infusorien. II. Ueber den Encystirungsprocess der Infusorien. Zeitschr. wiss. Zool. 4, 253.Google Scholar
Cohn, F. (1854). Untersuchungen über die Entwicklungsgeschichte der mikroskopisehen Algen und Pilze. Nov. Act. Acad. Coes. Leop.-Carol. Nat. Curios. 24, 101.Google Scholar
Cohn, F. (1866). Neue Infusorien im Seeaquarium. Zeitschr. Wiss. Zool. 16, 253.Google Scholar
Davenport, C. B. (1897). Experimental morphology, Pt. I. (London and New York.)Google Scholar
Delage, Y. and Hérouard, E. (1896). Traité de Zoologie concrète. Tome i: La Cellule et les Protozoaires. (Paris.)Google Scholar
De Morgan, W. (1926). Further observations on marine ciliates living in the laboratory tanks at Plymouth. Journ. Marine Biol. Assoc. (N.S.), 14, 23.CrossRefGoogle Scholar
Dobell, C. and O'Connor, F. W. (1921). The intestinal Protozoa of man. (London.)CrossRefGoogle Scholar
Doflein, F. (1916). Lehrbuch der Protozoenkunde, 4th ed. (Jena.)Google Scholar
Dujardin, F. (1841). Histoire naturelle des zoophytes. Infusoires. (Paris.)Google Scholar
Ehrenberg, C. G. (1838). Die Infusionsthierchen als vollkommene Organismen. (Leipzig.)Google Scholar
Enriques, P. (1902). Adattamento degli infusori marini alia vita nell' acqua dolce. Monit. Zool. Italiano, 13 (Supplem.), 49.Google Scholar
Enriques, P. (1902 a). Ricerche osmotiche sugli infusori. Rendic. R. Accad. Lincei, 11 (5), 340.Google Scholar
Enriques, P. (1903). Sull' adattamento degli infusori marini alia vita nell' acqua dolce. Rendic. R. Accad. Lincei 12 (5), 82.Google Scholar
Fabre-Domergue, (1885). Note sur les infusokes ciliés de la baie de Concarneau. Journ. Anat. et Physiol. 21, 554.Google Scholar
Fabre-Domergue, (1888). Recherches anatomiques et physiologiques sur les infusoires ciliés. Ann. Sci. Nat. (Zool.), 5, 1.Google Scholar
Fischer, W. (1914). Ueber Stuhluntersuchungen bei Europäern und Chinesen in Shanghai. Arch. f. Schiffs- und Trop.-Hyg. 18, 615.Google Scholar
Florentin, R. (1901). Description de deux infusoires ciliés nouveaux des mares salées de Lorraine. Ann. Sci. Nat. (Zool.), 12, 343.Google Scholar
Fromentel, E. De (1874). Études sur les Microzoaires ou Infusoires proprement dits. (Paris.)Google Scholar
Gaievskaïa, N. [1926]. Sur deux nouveaux infusoires des mares salées—Cladotricha Koltzowii nov. gen. nov. sp. et Palmarium salinum nov. gen. nov. sp. Arch. Russ. Protistol. 4, 1925, 255.Google Scholar
Goodey, T. (1913). The excystation of Colpoda cucullus from its resting cysts, and the nature and properties of the cyst membranes. Proc. Roy. Soc., B, 86, 427.Google Scholar
Gourret, P. and Roeser, P. (1886). Les protozoaires du Vieux-Port de Marseille. Arch. Zool. Exp. et Gén. (2e sér.), 4, 443.Google Scholar
Gruber, A. (1890). Biologische Studien an Protozoen. Biol. Centralbl. 9, 14.Google Scholar
Hamburger, C. and Buddenbrock, W. Von (1911). Nordische Ciliata, mit Ausschluss der Tintinnoidea. Nordisches Plankton, Abt. 13 (15 Lief.).Google Scholar
Hartmann, M. and Schilling, C. (1917). Die pathogenen Protozoen. (Berlin.)Google Scholar
Hentschel, C. C. (1924). On a new ciliate, Cryptochilum boreale nov. sp., from the intestine of Echinus esculentus Linn., together with some notes on the ciliates of echinoids. Parasitology, 16, 321.CrossRefGoogle Scholar
Houston, A. C. (1915). IXth Annual Report, Metropolitan Water Board, p. 51. (London.)Google Scholar
Ilovaisky, S. A. (1915). The morphology of the process of cyst-formation. Journ. Section Zool. Soc. Imp. Amis Sci. Nat., Anthrop. et Ethnogr. (N.S.), 2, 185. (Moscow.) [In Russian.]Google Scholar
Ilovaisky, S. A. (1925). Contributions à l'étude des kystes des infusoires hypotriches. Arch. Russ. Protistol. 3, 45. [in Russian.]Google Scholar
Ilovaisky, S. A. (1926). Material zum Studium der Cysten der Hypotrichen. Arch. f. Protistenk. 54, 92.Google Scholar
Jennings, H. S. (1897). Studies on reactions to stimuli in unicellular organisms. I. Reactions to chemical, osmotic and mechanical stimuli in the ciliate infusoria. Journ. Physiol. 21, 258.CrossRefGoogle ScholarPubMed
Kahl, A. (1926). Neue und wenig bekannte Formen der holotrichen und heterotrichen Ciliaten. Arch. f. Protistenk. 55, 197.Google Scholar
Kent, W. S. (1881). A Manual of the Infusoria, 2 [1881–1882]. (London.)Google Scholar
Kořínek, J. (1926). Über Süsswasserbakterien im Meere. Centralbl. f. Bakt. II. Abt. 66, 500.Google Scholar
Labbé, A. (1925). Contributions à l'étude de l'allélogenèse. ler Mémoire: Les cycles biologiques des Dunaliella. Arch. Anat. Microscop. 19, 313.Google Scholar
Lepşi, J. (1926). Zur Kenntnis einiger Holotrichen. Arch. f. Protistenk. 53, 378.Google Scholar
Maier, H. N. (1903). Über den feineren Bau der Wimperapparate der Infusorien. Arch. f. Protistenk. 2, 73.Google Scholar
Mansfeld, K. (1923). 16 neue oder wenig bekannte marine Infusorien. Arch. f. Protistenk. 46, 97.Google Scholar
Martini, (1910). Über einen bei amöbenruhrähnlichen Dysenterien vorkommenden Ciliaten. Zeitschr. f. Hyg. 67, 387.CrossRefGoogle Scholar
Massart, J. (1889). Sensibilité et adaptation des organismes à la concentration des solutions salines. Arch. Biol. 9, 515.Google Scholar
Massart, J. (1891). Recherches sur les organismes inférieurs. II. La sensibilité à la concentration chez les êtres unicellulaires marins. Bull. Acad. B. Sci. Belgique, 22 (3e sér.), 148.Google Scholar
Maupas, E. (1883). Contribution à l'étude morphologique et anatomique des infusoires cilies. Arch. Zool. Exp. et Gen. (2e sér.), 1, 427.Google Scholar
Maupas, E. (1889). Le rajeunissement karyogamique chez les ciliés. Arch. Zool. Exp. et Gen. 7, 149.Google Scholar
Mekeschkowsky, C. (1877). Studies on the Protozoa of North Russia. Trav. Soc. Nat. St Pétersbourg, 8, 203. [In Russian.]Google Scholar
Möbius, K. (1888). Bruckstücke einer Infusorienfauna der Kieler Bucht. Arch. f. Naturgesch. 54. Jahrg. 1, 81.Google Scholar
Moréa, L. (1924). Adaptation des Infusoires à des doses variées de chlorure de sodium. C.R. Soc. Biol. 91, 169.Google Scholar
Müller, O. F. (1773). Vermium terrestrium et fluvialilium…succincta historia (Havniae et Lipsiae).Google Scholar
Müller, O. F. (1786). Animalcula, fluviatilia et marina [etc.] (Hauniae).Google Scholar
Pearse, A. (1926). Animal ecology. (New York.)Google Scholar
Penard, E. (1922). Études sur les infusoires d'eau douce. (Geneve.)Google Scholar
Prowazek, S. (1904). Der Encystierungsvorgang bei Dileptus. Arch. f. Protistenk. 3, 64.Google Scholar
Quennerstedt, A. (1869). Bidrag till Sveriges Infusorie-fauna. III. Acta Univ. Lundensis, 6.Google Scholar
Rees, J. Van (1884). Protozoaires de l'Escaut de l'Est. Tijdschr. Nederl. Dierk. Vereenig. 1 (Suppl.), 592.Google Scholar
Rhumbler, L. (1888). Die verschiedenen Cystenbildungen und die Entwicklungsgeschichte der holotrichen Infusoriengattung Colpoda. Zeitsch. wiss. Zool. 46, 549.Google Scholar
Rhumbler, L. (1923). Ciliopbora. In Kükenthal and Krumbach's Handb.d.Zooloffie, 1,256.Google Scholar
Roux, J. (1901) Faune infusorienne des eaux stagnantes des environs de Genève. (Genève.)Google Scholar
Russo, A. (1914). Specie di ciliati viventi nell' intestino dello Strongyhcentrotus lividus Brandt. (Nota preliminare.) Boll. Accad. Gioen. Sc. Nat. Catania (Ser. 2), Fasc. 32, 2.Google Scholar
Schewiakoff, W. (1889). Beiträge zur Kenntniss der Holotrichen Ciliaten. Bibliotheca Zoologica, Heft 5.Google Scholar
Schewiakoff, W. (1893). Über die geographische Verbreitung der Süsswasser-Protozoën. Mém. Acad. Imp. Sci. St Pétersbourg (7e sér.), 41, No. 8.Google Scholar
Schewiakoff, W. (1894). On the biology of the Protozoa. Zapiski Imp. Akad. Nauk [Mém. Acad. Imp. Sci.], 75. (Suppl. No. 1.) [In Russian.]Google Scholar
Schewiakoff, W. (1896). The organization and systematics of the Infusoria Aspirotricha (Holotricha auctorum). Mém. Acad. Imp. Sci. St Pétersbourg (8e sér.), 4. [In Russian.]Google Scholar
Schuberg, A. (1905). Über Cilien und Trichocysten einiger Infusorien. Arch. f. Protistenk. 6, 61.Google Scholar
Semenov-Tian-Shansky, A. (1910). Die taxonomischen Grenzen der Art und ihrer Unterabteilungen. (Berlin.) [And in Mém. Acad. Imp. Sci. St Pétersbourg (8e sèr.), 25. [(In Russian.)]Google Scholar
Smith, J. C. (1899). Notices on some undescribed Infusoria, from the infusorial fauna of Louisiana. Trans. (Proc.) Amer. Micr. Soc. 20, 51.CrossRefGoogle Scholar
Sokolov, D. F. (1917). On the formation of secondary cysts in Gastrostyla steini Eng. Rev. Zool. Russe, 1, 321.Google Scholar
Stein, F. (1860). [On the classification of the holotrichous infusoria and some new genera and species of this order.] Sitzungsb. K. bohm. Oes. Wiss. Prog (Juli-Dezember), 56.Google Scholar
Stein, F. (1867). Der Organismus der Infusionsthiere nach eigenen Forschungen in systematischer Reihenfolge bearbeitet. II. Abth. (Leipzig.)Google Scholar
Stokes, A. C. (1884). Notes on a new Infusorian. Amer. Naturalist, 18, 659.CrossRefGoogle Scholar
Stokes, A. C. (1887). Notices of new fresh-water Infusoria. Proc. Amer. Philos. Soc. 24, 244.Google Scholar
Stokes, A. C. (1888). A preliminary contribution toward a history of the fresh-water infusoria of the United States. Journ. Trenton Nat. Hist. Soc. 1, 71.Google Scholar
Stowell, F. P. (1925). Physical and chemical conditions in the sea-water of the Zoological Society's Aquarium. Proc. Zool. Soc. London, p. 124.Google Scholar
Švec, F. (1897). Přispěvky k poznáni nálevniků českých. I. Bull. Internal. Acad. Prague, 6.Google Scholar
Wallengren, H. (1918). Biologisch-faunistische Untersuchungen aus dem Öresund. IV. Die Infusoriengattungen Lembus Cohn und Plagiopyla Stein. Acta Univ. Lundensis (Nov. Ser.), 14 (2), No. 30.Google Scholar
Wenyon, C. M. (1926). Protozoology, 2. (London.)Google Scholar
Woodcock, H. M. (1916). Observations on coprozoic flagellates. Phil. Trans. Roy. Soc., B, 207, 375.Google Scholar
Yakimoff, W. (1921). Sur la question de l'Uronema caudatum Martini. Bull. Soc. Path. Exot. 14, 555.Google Scholar
Yakimoff, W. (1922). Die Darmprotozoen des Menschen ausserhalb des Organismus. Arch. Soc. Russe Protistol. 1, 129. [In Russian.]Google Scholar
Yakimoff, W. (1922 a). Über Uronema caudatum beim Menschen. Arch. Soc. Russe Protistol. 1, 134 [In Russian.]Google Scholar
Yakimoff, W. (1922 b). L'examen des eaux courantes à Pétrograd. Bull. Soc. Path. Exot. 15, 12.Google Scholar
Yakimoff, W.(1924). Pathogenic Protozoa. In Zlatogorov's Text-book of Micro-organisms, 1, Part 2, fasc. 1. (Leningrad.) [In Russian.]Google Scholar
Yakimoff, W. and Kolpakoff, T. A. (1921). Les oolites de l'homme dues aux Protozoaires. Bull. Soc. Path. Exot. 14, 548.Google Scholar
Yakimoff, W. and Kolpakowa, [Kolpakoff] T. (1922). Die Darmprotozoen des Menschen bei Coliten. Arch. Soc. Russe Protistol. 1, 120. [In Russian.]Google Scholar
Yakimoff, W. L. and Wassilewsky, W. J. (1925). Les protozoaires de l'intestin de l'homme pendant les épidémies de Pétrograde (1919–1921). Bull. Soc. Path. Exot. 18, 183.Google Scholar
Yakimoff, W. L., Wassilewski, W. J. and Zwietkoff, N. H. (1925). Influence du chlorure de sodium sur les cultures de protozoaires. Bull. Soc. Path. Exot. 18, 261.Google Scholar
Yasuda, A. (1897). On the accommodation of some infusoria to the solutions of certain substances in various concentrations. Annot. Zool. Japonens. 1, 23.Google Scholar
Yasuda, A. (1900). Studien über die Anpassungsfahigkeit einiger Infusorien an concentrirte Losungen. Journ. College Sci. Tokyo, 13, 101.Google Scholar
Zuelzer, M. (1907). Über den Einfluss des Meerwassers auf die pulsierende Vacuole. Sitzungsb. Ges. Naturf. Freunde Berlin, p. 90.Google Scholar