Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-28T23:43:08.603Z Has data issue: false hasContentIssue false

The structure and life history of Crithidia pulicis, n. sp., parasitic in the alimentary tract of the human flea, pulex irritans

Published online by Cambridge University Press:  06 April 2009

Annie Porter
Affiliation:
Quick Laboratory, Cambridge, and University College, London.

Extract

1. Crithidia pulicis, n. sp., is a parasite of the alimentary tract of the human flea, Pulex irritans.

2. The fleas used in this investigation were bred to the third generation in special “flea cages” on the human body. “Wild” fleas were examined and yielded the same parasite. Both larvae and adult fleas were examined.

3. C. pulicis exhibits pre-flagellate, flagellate and post-flagellate stages in its life history and these phases gradually develop, the one from the other.

4. The flagellate form is very active, movement being accomplished by means of the myonemes of the membrane and body.

5. Pre-flagellates (figs. 1−8) are oval bodies, from 2·3 μ to 7 μ long by 1·5 μ to 4·5 μ broad. The nucleus contains much chromatin and a small karyosome may be present. The blepharoplast is large. The flagellum develops from a chromatophile area. The rate of acquisition of flagellum and membrane varies in individual parasites. Division rosettes are frequent. The pre-flagellates have a somewhat frail appearance.

6. The flagellates of C. pulicis (figs. 9−17) are 26 μ to 65 μ long. Their cytoplasm is richly but finely granular, the nucleus well marked, the blepharoplast large, showing slight variations in shape. Chromidia may be present. The undulating membrane is large, well marked and possesses myonemes which can be detected in the living organism. The free flagellum is relatively short.

7. Post-flagellates (figs. 23−36) are from 3 μ to 6 μ. by 2·0 μ to 4·6 μ. They occur in the rectum and dejecta of the fleas. They are produced by concentration of the protoplasm round the nucleus and blepharoplast with absorption of the membrane and flagellum and finally the production of a thin varnish-like coat.

8. Longitudinal division (figs. 15−22) is the method of multiplication. It occurs in the pre-flagellate and flagellate stages. It may be symmetrical or asymmetric. Division is initiated by that of the blepharoplast, followed by that of the flagellum, membrane and nucleus and finally the body cytoplasm. Two types of asymmetric division have been observed.

9. The method of infection is contaminative, the post-flagellates in the faeces being the source of infection. There is no evidence of hereditary infection.

10. Crithidia pulicis is a member of the genus Crithidia, and is a true parasite of the insect, Pulex irritans.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1911

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Basile, C. (1910–11). Sulla Leishmaniosi et sul suo modo di trasmissione. Rendiconti de R. Accad. d. Lincei, t. xix. 20 Nov. 1910, pp. 523527Google Scholar
Basile, C. (1910, 1911). Sulla Leishmaniosi et sul suo modo di trasmissione. Rendiconti de R. Accad. d. Lincei, t. xx. 8 Jan. 1911, pp. 50, 51Google Scholar
Basile, C. (1910, 1911). Sulla Leishmaniosi et sul suo modo di trasmissione. Rendiconti de R. Accad. d. Lincei, 19 Feb. 1911, pp. 50, 51;Google Scholar
Basile, C. (1910, 1911). Sulla Leishmaniosi et sul suo modo di trasmissione. Rendiconti de R. Accad. d. Lincei, 19 March 1911, 7 pp.Google Scholar
Bruce, D., Hamerton, A. E. and Bateman, H. R. (iv. 1911).Experiments to ascertain if certain Tabanidae act as the carriers of Trypanosoma pecorum. Proc. Roy. Soc. B. 83, pp. 349358.Google Scholar
Bruce, D., Hamerton, A. E. and Mackie, F. P. (v. 1911). Further researches on the development of Trypanosoma gambiense in Glossina palpalis. Proc. Roy. Soc. B. 83, pp. 513527.Google Scholar
Chatton, E. et Alilaire, E. (1908). Coexistence d'un Leptomonas (Herpetomonas) et d'un Trypanosoma chez un muscide non vulnérant, Drosophila confusa Staeger. Compt. Rend. Soc. Biol. lxiv. pp. 10041006.Google Scholar
Chatton, E. et Léger, A. (1911). Eutrypanosomes, Leptomonas et Leptotrypanosomes chez Drosophila confusa Staeger (Muscide). Compt. Rend. Soc. Biol. lxx. pp. 3436.Google Scholar
Chatton, E. (1911). Sur quelques Leptomonas de Muscides et leurs Leptotrypanosomes. Compt. Rend. Soc. Biol. lxx. pp. 120122.Google Scholar
Dunkerly, J. S. (vi. 1911). On some stages in the life-history of Leptomonas muscae domesticae, with some remarks on the Relationships of the Flagellate Parasites of Insects. Quart. Journ. Microsc. Sci. lvi. pp. 645655.Google Scholar
Flu, P. C. (1908). Ueber die Flagellaten im Darm von Melophagus ovinus. Arch. f. Protistenk. xii. pp. 147153.Google Scholar
Flu, P. C. (1911). Studien über die im Darm von Stubenfliege, Musca domestica, vorkommenden protozoären Gebilde. Centralbl. f. Bakt. etc. lvii. i Abt. Originate, pp. 522535.Google Scholar
Léger, L. (1902). Sur un flagellé parasite de l'Anopheles maculipennis. Compt. Rend. Soc. Biol. liv. pp. 354356, 10 figs.Google Scholar
Léger, L. (1904). Sur les affinités de l'herpetomonas subulata et la phylogenie des Trypanosomes. Compt. Rend. Soc. Biol. lvii. pp. 615617.Google Scholar
Mackinnon, D. (1910). Herpetomonads from the Alimentary Tract of certain dung-flies. Parasitology, iii. pp. 255274.CrossRefGoogle Scholar
Patton, W. S. (1907). Preliminary note on the development of a species of Herpetomonas found in Culex pipiens. Brit. Med. Journ. ii. pp. 7880.CrossRefGoogle Scholar
Patton, W. S. (1908). The Life-cycle of a species of Crithidia parasitic in the intestinal tract of Gerris fossarum, Fabr. Arch. f. Protistenk. xii. pp. 131146.Google Scholar
Patton, W. S. (1908). Herpetomonas lygaei. Arch. f. Protistenk. xiii. pp. 118.Google Scholar
Patton, W. S. (1909). A critical review of our present knowledge of the Haemoflagellates and allied forms. Parasitology, ii. pp. 91143.CrossRefGoogle Scholar
Patton, W. S. (1909). The Life-Cycle of a species of Crithidia parasitic in the intestinal tracts of Tabanus hilarius and Tabanus sp. Arch. f. Protistenk. xv. pp. 333362.Google Scholar
Patton, W. S. and Strickland, C. (1908). A critical review of the Relation of Blood-sucking Invertebrates to the Life-cycles of the Trypanosomes of Vertebrates, etc. Parasitology, i. pp. 322346.CrossRefGoogle Scholar
Porter, A. (1909). The Morphology and Life-history of Crithidia, gerridis, as found in the British water-bug, Gerris paludum. Parasitology, ii. pp. 348366.CrossRefGoogle Scholar
Porter, A. (1909). The Life-cycle of Herpetomonas jaculum (Léger), parasitic in the Alimentary Tract of Nepa cinerea. Parasitology, ii. pp. 367391.CrossRefGoogle Scholar
Porter, A. (1910). The Structure and Life-history of Crithidia melophagia (Flu), an Endoparasite of the Sheep Ked, Melophagus ovinus. Quart. Journ. Microsc. Sci. lv. pp. 189224.Google Scholar
Porter, A. (1911). Some remarks on the Genera Crithidia, Herpetomonas and Trypanosoma. Parasitology, iv. pp. 2223.CrossRefGoogle Scholar
Porter, A. (1911). Some remarks on the Genera Crithidia, Herpetomonas and Trypanosoma, and Dr Woodcock's views thereon. Parasitology, iv. pp. 154163.CrossRefGoogle Scholar
Ross, R. (1906). Notes on the Parasites of Mosquitoes found in India between 1895 and 1899. Journ. Hyg. vi. pp. 101108.CrossRefGoogle Scholar
Sangiorgi, G. (1911). Sulla presenza di forme di Leishmania infantum (Nicolle) nella pulce (Pulex serraticeps) dei cani randagi di Catania. Pathologica, iii. pp. 2324; 8990.Google Scholar
Swingle, L. D. (1911). The Transmission of Trypanosoma lewisi by rat-fleas (Ceratophyllus sp. and Pulex sp.), with short descriptions of three new Herpetomonads. Journ. Infect. Diseases, viii. pp. 125146.CrossRefGoogle Scholar
Werner, H. (1908). Ueber eine eingeisselige Flagellatenform im Darm der Stubenfliege. Arch. f. Protistenk. xiii. pp. 1922.Google Scholar