Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-30T23:41:12.793Z Has data issue: false hasContentIssue false

Structure and invasive behaviour of Plasmodium knowlesi merozoites in vitro

Published online by Cambridge University Press:  06 April 2009

L. H. Bannister
Affiliation:
Departments of Biology and Anatomy, Guy's Hospital Medical School, London SE1 9RT
G. A. Butcher
Affiliation:
Departments of Chemical Pathology, Guy's Hospital Medical School, London SE1 9RT
E. D. Dennis
Affiliation:
Departments of Chemical Pathology, Guy's Hospital Medical School, London SE1 9RT
G. H. Mitchell
Affiliation:
Departments of Chemical Pathology, Guy's Hospital Medical School, London SE1 9RT

Extract

The structure and invasive behaviour of extracellular erythrocytic merozoites prepared by a cell sieving method have been studied with the electron microscope.

Free merozoites contain organelles similar to those described in late schizonts of Plasmodium knowlesi. Their surface is lined by a coat of short filaments. On mixing with fresh red cells, merozoites at first adhere, then cause the red cell surface to invaginate rapidly, often with the formation of narrow membranous channels in the red cell interior. As the merozoite enters the invagination it forms an attachment by its cell coat to the rim of the pit, and finally leaves this coat behind as it is enclosed in a red cell vacuole. Dense, rounded intracellular bodies then move to the merozoite periphery, and apparently rupture to cause further localized invagination of the red cell vacuole. The merozoite finally loses its rhoptries, the pellicle is reduced to a single membrane and the parasite becomes a trophozoite. Invasion is complete by 1 min after adhesion, and the trophozoite is formed by 10 min.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1975

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aikawa, M. (1967). Ultrastructure of the pellicular complex of Plasmodium fallax. Journal of Cell Biology 35, 103–13.CrossRefGoogle ScholarPubMed
Aikawa, M. (1971). Plasmodium: the fine structure of malarial parasites. Experimental Parasitology 30, 284320.CrossRefGoogle ScholarPubMed
Aikawa, M., Cook, R. T., Sakoda, J. J. & Sprinz, H. (1969). Fine structure of the erythrocytic stages of Plasmodium knowlesi: A comparison between intracellular and free forms. Zeitschrift für Zellforschung und Mikroskopische Anatomie 100, 271–84.CrossRefGoogle ScholarPubMed
Bannister, L. H., Butcher, G. A.Dennis, E. D. & Mitchell, G. H. (1975). Studies on the structure and invasive behaviour of merozoites of Plasmodium knowlesi. Transactions of the Royal Society of Tropical Medicine and Hygiene 69, 5.Google ScholarPubMed
Butcher, G. A. & Cohen, S. (1970). Schizogony of Plasmodium knowlesi in the presence of normal and immune sera. Transactions of the Royal Society of Tropical Medicine and Hygiene 64, 470.CrossRefGoogle ScholarPubMed
Dennis, E. D., Mitchell, G. H., Butcher, G. A. & Cohen, S. (1975). In vitro isolation of Plasmodium knowlesi merozoites using polycarbonate sieves. Parasitology 71, 475–81.CrossRefGoogle ScholarPubMed
Dvorak, J. A., Miller, L. H., Whitehouse, W. C. & Shiroishi, T. (1975). Invasion of erythrocytes by malaria merozoites. Science 187, 748–50.CrossRefGoogle ScholarPubMed
Garnham, P. C. C., Bird, R. G., Baker, J. R. & Killick-Kendrick, R. (1969). Electron microscope studies on the motile stages of malaria parasites. Transactions of the Royal Society of Tropical Medicine and Hygiene 63, 328–32.CrossRefGoogle ScholarPubMed
Homewood, C. A. & Neame, K. D. (1974). Malaria and the permeability of the host erythrocyte. Nature, London 252, 718–19.CrossRefGoogle ScholarPubMed
Ladda, R. L. (1969). New insights into the fine structure of rodent malarial parasites. Military Medicine 134, 825–64.CrossRefGoogle ScholarPubMed
Ladda, R., Aikawa, M. & Sprinz, H. (1969). Penetration of erythrocytes by merozoites of mammalian and avian malarial parasites. Journal of Parasitology 65, 633–44.CrossRefGoogle Scholar
Rudzinska, M. A. (1969). The fine structure of malaria parasites. International Review of Cytology 25, 161–99.CrossRefGoogle ScholarPubMed
Rudzinska, M. A. & Vickerman, K. (1968). The fine structure. In Infectious Blood Diseases of Man and Animals (ed. Weinman, D. and Ristic, M.), vol. 1, pp. 217306. New York: Academic Press.Google Scholar
Scholtyseck, E. & Mehlhorn, H. (1970). Ultrastructural study of characteristic organelles (paired organelles, micronemes, micropores) of sporozoa and related organisms. Zeitschrift für Parasitenkunde 34, 97129.CrossRefGoogle ScholarPubMed
Seed, T. M., Aikawa, M., Sterling, C. & Rabbege, J. (1974). Surface properties of extracellular malaria parasites: morphological and cytochemical study. Infection and Immunity 9, 750–61.CrossRefGoogle ScholarPubMed
Sheetz, M. P. & Singer, S. J. (1974). Biological membranes as bilayer couples. A molecular mechanism of drug-erythrocyte interactions. Proceedings of the National Academy of Sciences of the U.S.A. 71, 4457–61.CrossRefGoogle ScholarPubMed
Sherman, I. W. & Tanigoshi, L. (1974). Glucose transport in the malarial (Plasmodium lophurae) infected erythrocyte. Journal of Protozoology 21, 603–7.CrossRefGoogle ScholarPubMed
Sterling, C. R., Aikawa, M. & Nussenzweig, R. S. (1972). Morphological divergence in a mammalian malarial parasite: the fine structure of Plasmodium brasilianum. Proceedings of the Helminthological Society of Washington 39, 109–29.Google Scholar
Trager, W. (1956). The intracellular position of malarial parasites. Transactions of the Royal Society of Tropical Medicine and Hygiene 50, 419–20.CrossRefGoogle ScholarPubMed
Wilson, R. J. M. (1974). The production of antigens by Plasmodium falciparum in vitro. International Journal for Parasitology 4, 537–47.CrossRefGoogle ScholarPubMed