Hostname: page-component-78c5997874-dh8gc Total loading time: 0 Render date: 2024-11-06T04:26:56.801Z Has data issue: false hasContentIssue false

The structure and function of the adhesive organ in strigeid trematodes

IV. Holostephanus lühei Szidat, 1936

Published online by Cambridge University Press:  06 April 2009

Christina Öhman
Affiliation:
Department of Zoology, University College, Cardiff

Extract

The biology and life-cycle of Holostephanus lühei is briefly described. The similarities in morphology between the adhesive organ gland cells of H. lühei and Cyathocotyle bushiensis are stressed. Alkaline and acid phosphatases were demonstrated in the adhesive organ gland cells and cuticle. Acid phosphatase also occurs in the caecal cells. Non-specific esterase, sensitive to E600 10−5M and Mipafox 10−3M, is present in the gland cells. The caeca contain a non-specific esterase sensitive to AgNO3 10−2M and PCMB 10−4M. Leucine aminopeptidase is present in the gland cells. The in vitro studies confirmed that the secretory products pass to the exterior of the parasite and have a histolytic action.

The four strigeids studied, Cyathocotyle bushiensis, Holostephanus lühei, Diplostomum spathaceum and Apatemon gracilis minor, are compared and the biological role of the secreted enzymes are discussed.

My sincere thanks are due to Dr D. A. Erasmus for suggesting this line of investigation and for his encouragement during the study. I am also grateful for his performing, on my behalf, the infection experiments and criticizing the manuscript. I wish to thank Professor J. Brough for his interest in the progress of the work, and the University College, Cardiff, for a grant from William E. Morgan's Bequest.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1966

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Bueding, E. (1952). Acetylcholinesterase activity of Schistosoma mansoni. Br. J. Pharmac. Chemother. 7, 563–6.CrossRefGoogle ScholarPubMed
Bueding, E. (1962). Comparative biochemistry of parasitic helminths. Comp. Biochem. Physiol. 4, 343–52.CrossRefGoogle ScholarPubMed
Bullock, W. L. (1948). Histochemical studies on the Acanthocephala. I. The distribution of alkaline glycerophosphatase and lipase. Anat. Rec. 101, 688.Google ScholarPubMed
Bullock, W. L. (1949). Histochemical studies on the Acanthocephala. II. The distribution of lipase and phosphatase. J. Morph. 84, 185–99.CrossRefGoogle Scholar
Bullock, W. L. (1958). Histochemical studies on the Acanthocephala. III. Comparative histochemistry of alkaline glycerophosphatase. Expl Parasit. 7, 5168.CrossRefGoogle ScholarPubMed
Burstone, M. S. & Folk, J. E. (1956). Histochemical demonstration of aminopeptidase. J. Histochem. Cytochem. 4, 217–26.CrossRefGoogle ScholarPubMed
Crompton, D. W. T. (1963). Morphological and histochemical observations of Polymorphus minutus (Goeze, 1782), with special reference to the body wall. Parasitology 53, 663–87.CrossRefGoogle Scholar
Dempsey, E. W. & Singer, M. (1946). Observations on the chemical cytology of the thyroid gland at different functional stages. Endocrinology 38, 270–95.CrossRefGoogle ScholarPubMed
Dusanic, D. G. (1959). Histochemical observations of alkaline phosphatase in Schistosoma mansoni. J. infect. Dis. 105, 18.CrossRefGoogle ScholarPubMed
Erasmus, D. A. (1957 a). Studies on phosphatase systems of cestodes. I. Studies on Taenia pisiformis (Cysticercus and adult). Parasitology 47, 7080.CrossRefGoogle ScholarPubMed
Erasmus, D. A. (1957 b). Studies on phosphatase systems of Cestodes. II. Studies on Cysticercus tenuicollis and Monezia expansa. Parasitology 47, 8191.CrossRefGoogle Scholar
Erasmus, D. A. (1962). Studies on the adult and metacercaria of Holostephanus lühei Szidat, 1936. Parasitology 52, 353–74.CrossRefGoogle Scholar
Erasmus, D. A. & Öhman, C. (1963). The structure and function of the adhesive organ in strigeid trematodes. Ann. N.Y. Acad. Sci. 113, 735.CrossRefGoogle ScholarPubMed
Erasmus, D. A. & Öhman, C. (1965). Electron microscope studies of the gland cells and host-parasite interface of the adhesive organ of Cyathocotyle bushiensis Khan, 1962. J. Parasit. 51, 761–9.CrossRefGoogle ScholarPubMed
Glenner, G. G., Burstone, M. S. & Meyer, D. B. (1959). A study of aminopeptidase activity in the stroma of neoplastic tissue, with a comparison of histochemical techniques. J. natn. Cancer Inst. 23, 857–73.Google ScholarPubMed
Halton, D. W. (1963). Some hydrolytic enzymes in two digenetic trematodes. Proc. XVI Int. Congr. Zool. 1, 29.Google Scholar
Jennings, J. B. (1962). Further studies on feeding and digestion in triclad Turbellaria. Biol. Bull. mar. biol. Lab., Woods Hole 123, 571–81.CrossRefGoogle Scholar
Kilejian, A., Schinazi, L. A. & Schwabe, C. W. (1961). Host–parasite relationship in echinococcosis. V. Histochemical observations on Echinococcus granulosus. J. Parasit. 47, 181–8.CrossRefGoogle ScholarPubMed
Lee, D. L. (1962 a). The distribution of esterase enzymes in Ascaris lumbricoides. Parasitology 52, 241–60.CrossRefGoogle Scholar
Lee, D. L. (1962 b). A histochemical study of esterase enzymes in the nervous system of Ascaris lumbricoides. J. Parasit. 48, Suppl. 2, p. 26. (Abstr.).Google Scholar
Lee, D. L. (1962 c). Studies on the function of the pseudosuckers and holdfast organ of Diplostomum phoxini Faust (Strigeida, Trematoda). Parasitology 52, 103–12.CrossRefGoogle Scholar
Lee, D. L. (1962 d). The histochemical localization of leucine aminopeptidase in Ascaris lumbricoides. Parasitology 52, 533–8.CrossRefGoogle Scholar
Lee, D. L., Rothman, A. H. & Senturia, J. B. (1963). Esterases in Hymenolepis and Hydatigera. Expl Parasit. 14, 285–95.CrossRefGoogle ScholarPubMed
Lee, D. L. & Tatchell, R. J. (1963). Studies on the tapeworm Anoplocephala perfoliata (Goeze, 1782). Parasitology 54, 467–79.CrossRefGoogle Scholar
Lentz, T. L. & Barrnett, R. J. (1961). Enzyme histochemistry of Hydra. J. exp. Zool. 147, 125–37.CrossRefGoogle ScholarPubMed
Lewert, R. M. & Dusanic, D. G. (1961). Effects of a symmetrical diaminodibenzylalkane on alkaline phosphatase of Schistosoma mansoni. J. infect. Dis. 109, 85–9.CrossRefGoogle ScholarPubMed
Naik, N. T. (1963). Technical variations in Koelle's histochemical method for demonstrating cholinesterase activity. Q. Jl microsc. Sci. 104, 89100.Google Scholar
Nimmo-Smith, R. H. & Standen, O. D. (1963). Phosphomonoesterases of Schistosoma mansoni. Expl Parasit. 13, 305–22.CrossRefGoogle ScholarPubMed
Öhman, C. (1965). The structure and function of the adhesive organ in strigeid trematodes. II. Diplostomum spathaceum Braun, 1893. Parasitology 55, 481502.CrossRefGoogle Scholar
Öhman, C. (1966). The structure and function of the adhesive organ in strigeid trematodes. Part III. Apatemon gracilis minor Yamaguti, 1933. Parasitology 56, 209–26.CrossRefGoogle Scholar
Pearse, A. G. E. (1960). Histochemistry, Theoretical and Applied, 2nd ed., 998 pp. London: J. and A. Churchill Ltd.Google Scholar
Pepler, W. J. (1958). Histochemical demonstration of an acetylcholinesterase in the ova of Schistosoma mansoni. J. Histochem. Cytochem. 6, 139–41.CrossRefGoogle ScholarPubMed
Pepler, W. J. & Pearse, A. G. E. (1957). The histochemistry of the esterase of rat brain, with special reference to those of the hypothalamic nuclei. J. Neurochem. 1, 193202.CrossRefGoogle ScholarPubMed
Phifer, K. (1960). Permeation and membrane transport in animal parasites; further observations on the uptake of glucose by Hymenolepis diminuta. J. Parasit. 46, 137–44.CrossRefGoogle ScholarPubMed
Pylkkö, O. O. (1956). Studies on the acetylcholine content and cholinesterase activity of the human pathogenic fish tapeworm Diphyllobothrium latum. Ph.D. thesis, University of Helsinki.Google Scholar
Robinson, D. L. H. (1961). Phosphatase in Schistosoma mansoni. Nature, Lond. 191, 473–4.CrossRefGoogle ScholarPubMed
Roche, J. (1950). Phosphatases. In The Enzymes, ed. Summers, J. B. and Myrbäck, M.. New York: Academic Press, Inc.Google Scholar
Rogers, W. P. (1947). Histological distribution of alkaline phosphatase in helminth parasites. Nature, Lond. 159, 374.CrossRefGoogle ScholarPubMed
Rosenbaum, R. M. & Ditzion, B. (1963). Enzymic histochemistry of granular components in digestive gland cells of the Roman snail Helix pomatia. Biol. Bull. mar. biol. Lab., Woods Hole 124, 211–24.CrossRefGoogle Scholar
Rosenbaum, R. M. & Rolon, C. I. (1960). Intracellular digestion and hydrolytic enzymes in the phagocytes of planarians. Biol. Bull. mar. biol. Lab., Woods Hole 118, 315–23.CrossRefGoogle Scholar
Rosenbaum, R. M. & Wittner, M. (1962). Intracytoplasmic particles and enzymes associated with feeding and digestion in Paramecium caudatum. The possible role of the neutral red granules. Arch. Protistenk. 106, 223–40.Google Scholar
Schwabe, C. W., Koussa, M. & Acra, A. N. (1961). Host-parasite relationships in Echino-coccosis. IV. Acetylcholinesterase and permeability regulation in the hydatid cyst wall. Comp. Biochem. Physiol. 2, 161–72.CrossRefGoogle Scholar
Standen, O. D. (1962). Observations in mice on the schistosomicidal properties of 1,7-bis(paminophenoxy)heptane in vivo and in vivo/in vitro. In Ciba Foundation Symposium on Bilharziasis, pp. 266–86. London: Churchill.CrossRefGoogle Scholar
Szidat, L. (1936). Parasiten aus Seeschwalben. I. Über neue Cyathocotyliden aus dem Darm von Sterna hirundo L. und Sterna paradisea. Z. ParasitKde. 8, 285316.CrossRefGoogle Scholar
Wigglesworth, V. B. (1958). The distribution of esterase in the nervous system and other tissues of the insect Rhodnius prolixus: Q. Jl microsc. Sci. 99, 441–50.Google Scholar