Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-20T20:54:26.483Z Has data issue: false hasContentIssue false

Strongyloides infection in rodents: immune response and immune regulation

Published online by Cambridge University Press:  24 February 2016

MINKA BRELOER*
Affiliation:
Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
DAVID ABRAHAM
Affiliation:
Sidney Kimmel Medical College, at Thomas Jefferson University, 233 South 10th Street, Philadelphia, PA 19107, USA
*
*Corresponding author: Bernhard Nocht Institute for Tropical Medicine, Bernhard-Nocht-Street 74, 20359 Hamburg, Germany. Tel.: 0049-40-42818-830. Fax: 0049-40-42818-400. E-mail: [email protected]

Summary

The human pathogenic nematode Strongyloides stercoralis infects approximately 30–100 million people worldwide. Analysis of the adaptive immune response to S. stercoralis beyond descriptive studies is challenging, as no murine model for the complete infection cycle is available. However, the combined employment of different models each capable of modelling some features of S. stercoralis life cycle and pathology has advanced our understanding of the immunological mechanisms involved in host defence. Here we review: (i) studies using S. stercoralis third stage larvae implanted in diffusion chambers in the subcutaneous tissue of mice that allow analysis of the immune response to the human pathogenic Strongyloides species; (ii) studies using Strongyloides ratti and Strongyloides venezuelensis that infect mice and rats to extend the analysis to the parasites intestinal life stage and (iii) studies using S. stercoralis infected gerbils to analyse the hyperinfection syndrome, a severe complication of human strongyloidiasis that is not induced by rodent specific Strongyloides spp. We provide an overview of the information accumulated so far showing that Strongyloides spp. elicits a classical Th2 response that culminates in different, site specific, effector functions leading to either entrapment and killing of larvae in the tissues or expulsion of parasitic adults from the intestine.

Type
Special Issue Review
Copyright
Copyright © Cambridge University Press 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Abe, T. and Nawa, Y. (1988). Worm expulsion and mucosal mast cell response induced by repetitive IL-3 administration in Strongyloides ratti-infected nude mice. Immunology 63, 181185.Google ScholarPubMed
Abe, T., Sugaya, H., Ishida, K., Khan, W. I., Tasdemir, I. and Yoshimura, K. (1993). Intestinal protection against Strongyloides ratti and mastocytosis induced by administration of interleukin-3 in mice. Immunology 80, 116121.Google ScholarPubMed
Abraham, D., Rotman, H. L., Haberstroh, H. F., Yutanawiboonchai, W., Brigandi, R. A., Leon, O., Nolan, T. J. and Schad, G. A. (1995). Strongyloides stercoralis: protective immunity to third-stage larvae inBALB/cByJ mice. Experimental Parasitology 80, 297307.CrossRefGoogle ScholarPubMed
Abraham, D., Hess, J. A., Mejia, R., Nolan, T. J., Lok, J. B., Lustigman, S. and Nutman, T. B. (2011). Immunization with the recombinant antigen Ss-IR induces protective immunity to infection with Strongyloides stercoralis in mice. Vaccine 29, 81348140.CrossRefGoogle ScholarPubMed
Allen, J. E. and Maizels, R. M. (2011). Diversity and dialogue in immunity to helminths. Nature reviews. Immunology 11, 375388.Google Scholar
Ben Nouir, N., Piedavent, M., Osterloh, A. and Breloer, M. (2012). Passive immunization with a monoclonal IgM antibody specific for Strongyloides ratti HSP60 protects mice against challenge infection. Vaccine 30, 49714976.CrossRefGoogle ScholarPubMed
Blankenhaus, B., Klemm, U., Eschbach, M. L., Sparwasser, T., Huehn, J., Kuhl, A. A., Loddenkemper, C., Jacobs, T. and Breloer, M. (2011). Strongyloides ratti infection induces expansion of Foxp3+ regulatory T cells that interfere with immune response and parasite clearance in BALB/c mice. Journal of Immunology 186, 42954305.Google Scholar
Blankenhaus, B., Reitz, M., Brenz, Y., Eschbach, M. L., Hartmann, W., Haben, I., Sparwasser, T., Huehn, J., Kuhl, A., Feyerabend, T. B., Rodewald, H. R. and Breloer, M. (2014). Foxp3(+) regulatory T cells delay expulsion of intestinal nematodes by suppression of IL-9-driven mast cell activation in BALB/c but not in C57BL/6 mice. PLoS Pathogens 10, e1003913.CrossRefGoogle ScholarPubMed
Bleay, C., Wilkes, C. P., Paterson, S. and Viney, M. E. (2007). Density-dependent immune responses against the gastrointestinal nematode Strongyloides ratti . International Journal for Parasitology 37, 15011509.Google Scholar
Bonne-Annee, S., Kerepesi, L. A., Hess, J. A., O'Connell, A. E., Lok, J. B., Nolan, T. J. and Abraham, D. (2013). Human and mouse macrophages collaborate with neutrophils to kill larval Strongyloides stercoralis . Infection and Immunity 81, 33463355.Google Scholar
Bonne-Annee, S., Kerepesi, L. A., Hess, J. A., Wesolowski, J., Paumet, F., Lok, J. B., Nolan, T. J. and Abraham, D. (2014). Extracellular traps are associated with human and mouse neutrophil and macrophage mediated killing of larval Strongyloides stercoralis . Microbes and Infection/Institut Pasteur 16, 502511.Google Scholar
Breloer, M., Hartmann, W., Blankenhaus, B., Eschbach, M. L., Pfeffer, K. and Jacobs, T. (2015). Cutting Edge: the BTLA-HVEM regulatory pathway interferes with protective immunity to intestinal Helminth infection. Journal of Immunology 194, 14131416.CrossRefGoogle ScholarPubMed
Brigandi, R. A., Rotman, H. L., Leon, O., Nolan, T. J., Schad, G. A. and Abraham, D. (1998). Strongyloides stercoralis host-adapted third-stage larvae are the target of eosinophil-associated immune-mediated killing in mice. The Journal of Parasitology 84, 440445.CrossRefGoogle ScholarPubMed
Brigandi, R. A., Rotman, H. L., Yutanawiboonchai, W., Leon, O., Nolan, T. J., Schad, G. A. and Abraham, D. (1996). Strongyloides stercoralis: role of antibody and complement in immunity to the third stage of larvae in BALB/cByJ mice. Experimental Parasitology 82, 279289.Google Scholar
Brigandi, R. A., Rotman, H. L., Nolan, T. J., Schad, G. A. and Abraham, D. (1997). Chronicity in Strongyloides stercoralis infections: dichotomy of the protective immune response to infective and autoinfective larvae in a mouse model. The American Journal of Tropical Medicine and Hygiene 56, 640646.CrossRefGoogle ScholarPubMed
Bruns, S., Kniemeyer, O., Hasenberg, M., Aimanianda, V., Nietzsche, S., Thywissen, A., Jeron, A., Latge, J. P., Brakhage, A. A. and Gunzer, M. (2010). Production of extracellular traps against Aspergillus fumigatus in vitro and in infected lung tissue is dependent on invading neutrophils and influenced by hydrophobin RodA. PLoS Pathogens 6, e1000873.Google Scholar
Carmo, A. M., Vicentini, M. A., Dias, A. T., Alves, L. L., Alves, C. C., Brandi, J. S., De Paula, M. L., Fernandes, A., Barsante, M. M., Souza, M. A., Teixeira, H. C., Negrao-Correa, D. and Ferreira, A. P. (2009). Increased susceptibility to Strongyloides venezuelensis in mice due to Mycobacterium bovis co-infection which modulates production of Th2 cytokines. Parasitology 136, 13571365.Google Scholar
Chiuso-Minicucci, F., Marra, N. M., Zorzella-Pezavento, S. F., Franca, T. G., Ishikawa, L. L., Amarante, M. R., Amarante, A. F. and Sartori, A. (2010). Recovery from Strongyloides venezuelensis infection in Lewis rats is associated with a strong Th2 response. Parasite Immunology 32, 7478.CrossRefGoogle ScholarPubMed
Chiuso-Minicucci, F., Van, D. B., Zorzella-Pezavento, S. F., Peres, R. S., Ishikawa, L. L., Rosa, L. C., Franca, T. G., Turato, W. M., Amarante, A. F. and Sartori, A. (2011). Experimental autoimmune encephalomyelitis evolution was not modified by multiple infections with Strongyloides venezuelensis . Parasite Immunology 33, 303308.CrossRefGoogle Scholar
Chtanova, T., Schaeffer, M., Han, S. J., van Dooren, G. G., Nollmann, M., Herzmark, P., Chan, S. W., Satija, H., Camfield, K., Aaron, H., Striepen, B. and Robey, E. A. (2008). Dynamics of neutrophil migration in lymph nodes during infection. Immunity 29, 487496.Google Scholar
Dawkins, H. J. and Grove, D. I. (1981 a). Kinetics of primary and secondary infections with Strongyloides ratti in mice. International Journal for Parasitology 11, 8996.Google Scholar
Dawkins, H. J. and Grove, D. I. (1981 b). Transfer by serum and cells of resistance to infection with Strongyloides ratti in mice. Immunology 43, 317322.Google Scholar
Dawkins, H. J. and Grove, D. I. (1982 a). Attempts to establish infections with Strongyloides stercoralis in mice and other laboratory animals. Journal of Helminthology 56, 2326.CrossRefGoogle ScholarPubMed
Dawkins, H. J. and Grove, D. I. (1982 b). Immunisation of mice against Strongyloides ratti . Zeitschrift fur Parasitenkunde 66, 327333.Google Scholar
Dawkins, H. J., Grove, D. I., Dunsmore, J. D. and Mitchell, G. F. (1980). Strongyloides ratti: susceptibility to infection and resistance to reinfection in inbred strains of mice as assessed by excretion of larvae. International Journal for Parasitology 10, 125129.Google Scholar
Dawkins, H. J., Muir, G. M. and Grove, D. I. (1981). Histopathological appearances in primary and secondary infections with Strongyloides ratti in mice. International Journal for Parasitology 11, 97103.CrossRefGoogle ScholarPubMed
Dawkins, H. J., Mitchell, G. F. and Grove, D. I. (1982 a). Strongyloides ratti infections in congenitally hypothymic (nude) mice. The Australian Journal of Experimental Biology and Medical Science 60, 181186.Google Scholar
Dawkins, H. J., Thomason, H. J. and Grove, D. I. (1982 b). The occurrence of Strongyloides ratti in the tissues of mice after percutaneous infection. Journal of Helminthology 56, 4550.Google Scholar
Dawkins, H. J., Robertson, T. A., Papadimitriou, J. M. and Grove, D. I. (1983). Light and electron microscopical studies of the location of Strongyloides ratti in the mouse intestine. Zeitschrift fur Parasitenkunde 69, 357370.Google Scholar
de Messias, I. J., Genta, R. M. and Mohren, W. D. (1994). Adherence of monocytes and polymorphonuclear cells to infective larvae of Strongyloides stercoralis after complement activation. The Journal of Parasitology 80, 267274.Google Scholar
Dias, A. T., de Castro, S. B., Alves, C. C., Rezende, A. B., Rodrigues, M. F., Machado, R. R., Fernandes, A., Negrao-Correa, D., Teixeira, H. C. and Ferreira, A. P. (2011). Lower production of IL-17A and increased susceptibility to Mycobacterium bovis in mice coinfected with Strongyloides venezuelensis . Memorias do Instituto Oswaldo Cruz 106, 617619.Google Scholar
Dudeck, A., Dudeck, J., Scholten, J., Petzold, A., Surianarayanan, S., Kohler, A., Peschke, K., Vohringer, D., Waskow, C., Krieg, T., Muller, W., Waisman, A., Hartmann, K., Gunzer, M. and Roers, A. (2011). Mast cells are key promoters of contact allergy that mediate the adjuvant effects of haptens. Immunity 34, 973984.Google Scholar
El-Malky, M., Maruyama, H., Hirabayashi, Y., Shimada, S., Yoshida, A., Amano, T., Tominaga, A., Takatsu, K. and Ohta, N. (2003). Intraepithelial infiltration of eosinophils and their contribution to the elimination of adult intestinal nematode, Strongyloides venezuelensis in mice. Parasitology International 52, 7179.Google Scholar
El-Malky, M. A., Maruyama, H., Al-Harthi, S. A., El-Beshbishi, S. N. and Ohta, N. (2013). The role of B-cells in immunity against adult Strongyloides venezuelensis . Parasites & Vectors 6, 148.Google Scholar
Eschbach, M. L., Klemm, U., Kolbaum, J., Blankenhaus, B., Brattig, N. and Breloer, M. (2010). Strongyloides ratti infection induces transient nematode-specific Th2 response and reciprocal suppression of IFN-gamma production in mice. Parasite Immunology 32, 370383.Google Scholar
Feyerabend, T. B., Weiser, A., Tietz, A., Stassen, M., Harris, N., Kopf, M., Radermacher, P., Moller, P., Benoist, C., Mathis, D., Fehling, H. J. and Rodewald, H. R. (2011). Cre-mediated cell ablation contests mast cell contribution in models of antibody- and T cell-mediated autoimmunity. Immunity 35, 832844.Google Scholar
Finkelman, F. D., Shea-Donohue, T., Morris, S. C., Gildea, L., Strait, R., Madden, K. B., Schopf, L. and Urban, J. F. Jr. (2004). Interleukin-4- and interleukin-13-mediated host protection against intestinal nematode parasites. Immunological Reviews 201, 139155.Google Scholar
Fukao, T., Yamada, T., Tanabe, M., Terauchi, Y., Ota, T., Takayama, T., Asano, T., Takeuchi, T., Kadowaki, T., Hata Ji, J. and Koyasu, S. (2002). Selective loss of gastrointestinal mast cells and impaired immunity in PI3 K-deficient mice. Nature Immunology 3, 295304.Google Scholar
Galioto, A. M., Hess, J. A., Nolan, T. J., Schad, G. A., Lee, J. J. and Abraham, D. (2006). Role of eosinophils and neutrophils in innate and adaptive protective immunity to larval Strongyloides stercoralis in mice. Infection and Immunity 74, 57305738.CrossRefGoogle ScholarPubMed
Gardner, M. P., Gems, D. and Viney, M. E. (2006). Extraordinary plasticity in aging in Strongyloides ratti implies a gene-regulatory mechanism of lifespan evolution. Aging Cell 5, 315323.CrossRefGoogle ScholarPubMed
Gebreselassie, N. G., Moorhead, A. R., Fabre, V., Gagliardo, L. F., Lee, N. A., Lee, J. J. and Appleton, J. A. (2012). Eosinophils preserve parasitic nematode larvae by regulating local immunity. Journal of Immunology 188, 417425.CrossRefGoogle ScholarPubMed
Goncalves, A. L., Rodrigues, R. M., Silva, N. M., Goncalves, F. A., Cardoso, C. R., Beletti, M. E., Ueta, M. T., Silva, J. S. and Costa-Cruz, J. M. (2008). Immunolocalization and pathological alterations following Strongyloides venezuelensis infection in the lungs and the intestine of MHC class I or II deficient mice. Veterinary Parasitology 158, 319328.CrossRefGoogle ScholarPubMed
Greaves, D., Coggle, S., Pollard, C., Aliyu, S. H. and Moore, E. M. (2013). Strongyloides stercoralis infection. BMJ 347, f4610.CrossRefGoogle ScholarPubMed
Grove, D. I. and Northern, C. (1989). Dissociation of the protective immune response in the mouse to Strongyloides ratti . Journal of Helminthology 63, 307314.CrossRefGoogle ScholarPubMed
Grove, D. I., Northern, C. and Dawkins, H. J. (1985). Interactions of Strongyloides ratti free-living and skin-penetrated infective larvae and parasitic adults with serum and cells in vitro . The Australian Journal of Experimental Biology and Medical Science 63 (Pt 5), 521529.CrossRefGoogle ScholarPubMed
Haben, I., Hartmann, W. and Breloer, M. (2014). Nematode-induced interference with vaccination efficacy targets follicular T helper cell induction and is preserved after termination of infection. PLoS Neglected Tropical Diseases 8, e3170.Google Scholar
Hartmann, W., Haben, I., Fleischer, B. and Breloer, M. (2011). Pathogenic nematodes suppress humoral responses to third-party antigens in vivo by IL-10-mediated interference with Th cell function. Journal of Immunology 187, 40884099.Google Scholar
Hartmann, W., Eschbach, M. L. and Breloer, M. (2012). Strongyloides ratti infection modulates B and T cell responses to third party antigens. Experimental Parasitology 132, 6975.CrossRefGoogle Scholar
Herbert, D. R., Lee, J. J., Lee, N. A., Nolan, T. J., Schad, G. A. and Abraham, D. (2000). Role of IL-5 in innate and adaptive immunity to larval Strongyloides stercoralis in mice. Journal of Immunology 165, 45444551.Google Scholar
Herbert, D. R., Nolan, T. J., Schad, G. A. and Abraham, D. (2002 a). The role of B cells in immunity against larval Strongyloides stercoralis in mice. Parasite Immunology 24, 95101.Google Scholar
Herbert, D. R., Nolan, T. J., Schad, G. A., Lustigman, S. and Abraham, D. (2002 b). Immunoaffinity-isolated antigens induce protective immunity against larval Strongyloides stercoralis in mice. Experimental Parasitology 100, 112120.Google Scholar
Huang, L., Gebreselassie, N. G., Gagliardo, L. F., Ruyechan, M. C., Lee, N. A., Lee, J. J. and Appleton, J. A. (2014). Eosinophil-derived IL-10 supports chronic nematode infection. Journal of Immunology 193, 41784187.Google Scholar
Hubner, M. P., Shi, Y., Torrero, M. N., Mueller, E., Larson, D., Soloviova, K., Gondorf, F., Hoerauf, A., Killoran, K. E., Stocker, J. T., Davies, S. J., Tarbell, K. V. and Mitre, E. (2012). Helminth protection against autoimmune diabetes in nonobese diabetic mice is independent of a type 2 immune shift and requires TGF-beta. Journal of Immunology 188, 559568.Google Scholar
Kerepesi, L. A., Nolan, T. J., Schad, G. A., Lustigman, S., Herbert, D. R., Keiser, P. B., Nutman, T. B., Krolewiecki, A. J. and Abraham, D. (2004). Human immunoglobulin G mediates protective immunity and identifies protective antigens against larval Strongyloides stercoralis in mice. The Journal of Infectious Diseases 189, 12821290.Google Scholar
Kerepesi, L. A., Keiser, P. B., Nolan, T. J., Schad, G. A., Abraham, D. and Nutman, T. B. (2005). DNA immunization with Na+-K+ ATPase (Sseat-6) induces protective immunity to larval Strongyloides stercoralis in mice. Infection and Immunity 73, 22982305.CrossRefGoogle ScholarPubMed
Kerepesi, L. A., Hess, J. A., Nolan, T. J., Schad, G. A. and Abraham, D. (2006). Complement component C3 is required for protective innate and adaptive immunity to larval Strongyloides stercoralis in mice. Journal of Immunology 176, 43154322.Google Scholar
Kerepesi, L. A., Hess, J. A., Leon, O., Nolan, T. J., Schad, G. A. and Abraham, D. (2007). Toll-like receptor 4 (TLR4) is required for protective immunity to larval Strongyloides stercoralis in mice. Microbes and Infection/Institut Pasteur 9, 2834.Google Scholar
Khan, A. I., Horii, Y., Tiuria, R., Sato, Y. and Nawa, Y. (1993). Mucosal mast cells and the expulsive mechanisms of mice against Strongyloides venezuelensis . International Journal for Parasitology 23, 551555.CrossRefGoogle ScholarPubMed
Klementowicz, J. E., Travis, M. A. and Grencis, R. K. (2012). Trichuris muris: a model of gastrointestinal parasite infection. Seminars in Immunopathology 34, 815828.CrossRefGoogle Scholar
Knight, P. A., Wright, S. H., Lawrence, C. E., Paterson, Y. Y. and Miller, H. R. (2000). Delayed expulsion of the nematode Trichinella spiralis in mice lacking the mucosal mast cell-specific granule chymase, mouse mast cell protease-1. The Journal of Experimental Medicine 192, 18491856.Google Scholar
Kolbaum, J., Ritter, U., Zimara, N., Brewig, N., Eschbach, M. L. and Breloer, M. (2011). Efficient control of Leishmania and Strongyloides despite partial suppression of nematode-induced Th2 response in co-infected mice. Parasite Immunology 33, 226235.Google Scholar
Kolbaum, J., Eschbach, M. L., Steeg, C., Jacobs, T., Fleischer, B. and Breloer, M. (2012 a). Efficient control of Plasmodium yoelii infection in BALB/c and C57BL/6 mice with pre-existing Strongyloides ratti infection. Parasite Immunology 34, 388393.Google Scholar
Kolbaum, J., Tartz, S., Hartmann, W., Helm, S., Nagel, A., Heussler, V., Sebo, P., Fleischer, B., Jacobs, T. and Breloer, M. (2012 b). Nematode-induced interference with the anti-Plasmodium CD8+ T-cell response can be overcome by optimizing antigen administration. European Journal of Immunology 42, 890900.CrossRefGoogle ScholarPubMed
Korenaga, M., Hitoshi, Y., Yamaguchi, N., Sato, Y., Takatsu, K. and Tada, I. (1991 a). The role of interleukin-5 in protective immunity to Strongyloides venezuelensis infection in mice. Immunology 72, 502507.Google Scholar
Korenaga, M., Watanabe, N. and Tada, I. (1991 b). Effects of anti-IgE monoclonal antibody on a primary infection of Strongyloides ratti in mice. Parasitology Research 77, 362363.Google Scholar
Krolewiecki, A. J., Ramanathan, R., Fink, V., McAuliffe, I., Cajal, S. P., Won, K., Juarez, M., Di Paolo, A., Tapia, L., Acosta, N., Lee, R., Lammie, P., Abraham, D. and Nutman, T. B. (2010). Improved diagnosis of Strongyloides stercoralis using recombinant antigen-based serologies in a community-wide study in northern Argentina. Clinical and Vaccine Immunology: CVI 17, 16241630.Google Scholar
Kruger, P., Saffarzadeh, M., Weber, A. N., Rieber, N., Radsak, M., von Bernuth, H., Benarafa, C., Roos, D., Skokowa, J. and Hartl, D. (2015). Neutrophils: between host defence, immune modulation, and tissue injury. PLoS Pathogens 11, e1004651.CrossRefGoogle ScholarPubMed
Lahl, K., Loddenkemper, C., Drouin, C., Freyer, J., Arnason, J., Eberl, G., Hamann, A., Wagner, H., Huehn, J. and Sparwasser, T. (2007). Selective depletion of Foxp3+ regulatory T cells induces a scurfy-like disease. The Journal of Experimental Medicine 204, 5763.Google Scholar
Lantz, C. S., Boesiger, J., Song, C. H., Mach, N., Kobayashi, T., Mulligan, R. C., Nawa, Y., Dranoff, G. and Galli, S. J. (1998). Role for interleukin-3 in mast-cell and basophil development and in immunity to parasites. Nature 392, 9093.Google Scholar
Lantz, C. S., Min, B., Tsai, M., Chatterjea, D., Dranoff, G. and Galli, S. J. (2008). IL-3 is required for increases in blood basophils in nematode infection in mice and can enhance IgE-dependent IL-4 production by basophils in vitro . Laboratory Investigation; A Journal of Technical Methods and Pathology 88, 11341142.Google Scholar
Licona-Limon, P., Henao-Mejia, J., Temann, A. U., Gagliani, N., Licona-Limon, I., Ishigame, H., Hao, L., Herbert, D. R. and Flavell, R. A. (2013 a). Th9 cells drive host immunity against gastrointestinal worm infection. Immunity 39, 744757.Google Scholar
Licona-Limon, P., Kim, L. K., Palm, N. W. and Flavell, R. A. (2013 b). TH2, allergy and group 2 innate lymphoid cells. Nature Immunology 14, 536542.Google Scholar
Ligas, J. A., Kerepesi, L. A., Galioto, A. M., Lustigman, S., Nolan, T. J., Schad, G. A. and Abraham, D. (2003). Specificity and mechanism of immunoglobulin M (IgM)- and IgG-dependent protective immunity to larval Strongyloides stercoralis in mice. Infection and Immunity 71, 68356843.Google Scholar
Machado, E. R., Ueta, M. T., Lourenco, E. V., Anibal, F. F., Sorgi, C. A., Soares, E. G., Roque-Barreira, M. C., Medeiros, A. I. and Faccioli, L. H. (2005). Leukotrienes play a role in the control of parasite burden in murine strongyloidiasis. Journal of Immunology 175, 38923899.Google Scholar
Machado, E. R., Ueta, M. T., Lourenco, E. V., Anibal, F. F., Roque-Barreira, M. C. and Faccioli, L. H. (2007). Comparison of immune responses in mice infected with different strains of Strongyloides venezuelensis . Parasite Immunology 29, 549557.Google Scholar
Machado, E. R., Carlos, D., Lourenco, E. V., Sorgi, C. A., Silva, E. V., Ramos, S. G., Ueta, M. T., Aronoff, D. M. and Faccioli, L. H. (2009). Counterregulation of Th2 immunity by interleukin 12 reduces host defenses against Strongyloides venezuelensis infection. Microbes and Infection/Institut Pasteur 11, 571578.Google Scholar
Machado, E. R., Carlos, D., Lourenco, E. V., Souza, G. E., Sorgi, C. A., Silva, E. V., Ueta, M. T., Ramos, S. G., Aronoff, D. M. and Faccioli, L. H. (2010). Cyclooxygenase-derived mediators regulate the immunological control of Strongyloides venezuelensis infection. FEMS Immunology and Medical Microbiology 59, 1832.Google Scholar
Machado, E. R., Carlos, D., Sorgi, C. A., Ramos, S. G., Souza, D. I., Soares, E. G., Costa-Cruz, J. M., Ueta, M. T., Aronoff, D. M. and Faccioli, L. H. (2011). Dexamethasone effects in the Strongyloides venezuelensis infection in a murine model. The American Journal of Tropical Medicine and Hygiene 84, 957966.Google Scholar
Maruyama, H., Yabu, Y., Yoshida, A., Nawa, Y. and Ohta, N. (2000). A role of mast cell glycosaminoglycans for the immunological expulsion of intestinal nematode, Strongyloides venezuelensis . Journal of Immunology 164, 37493754.Google Scholar
Matsumoto, M., Sasaki, Y., Yasuda, K., Takai, T., Muramatsu, M., Yoshimoto, T. and Nakanishi, K. (2013). IgG and IgE collaboratively accelerate expulsion of Strongyloides venezuelensis in a primary infection. Infection and Immunity 81, 25182527.Google Scholar
McHugh, T. D., Jenkins, T. and McLaren, D. J. (1989). Strongyloides ratti: studies of cutaneous reactions elicited in naive and sensitized rats and of changes in surface antigenicity of skin-penetrating larvae. Parasitology 98 (Pt 1), 95103.Google Scholar
McSorley, H. J. and Maizels, R. M. (2012). Helminth infections and host immune regulation. Clinical Microbiology Reviews 25, 585608.Google Scholar
Murphy, T. L. and Murphy, K. M. (2010). Slow down and survive: enigmatic immunoregulation by BTLA and HVEM. Annual Review of Immunology 28, 389411.Google Scholar
Murray, P. J., Allen, J. E., Biswas, S. K., Fisher, E. A., Gilroy, D. W., Goerdt, S., Gordon, S., Hamilton, J. A., Ivashkiv, L. B., Lawrence, T., Locati, M., Mantovani, A., Martinez, F. O., Mege, J. L., Mosser, D. M., Natoli, G., Saeij, J. P., Schultze, J. L., Shirey, K. A., Sica, A., Suttles, J., Udalova, I., van Ginderachter, J. A., Vogel, S. N. and Wynn, T. A. (2014). Macrophage activation and polarization: nomenclature and experimental guidelines. Immunity 41, 1420.Google Scholar
Murrell, K. D. (1981). Protective role of immunoglobulin G in immunity to Strongyloides ratti . The Journal of Parasitology 67, 167173.Google Scholar
Nakamura-Uchiyama, F., Nagao, T., Obara, A., Ishiwata, K. and Nawa, Y. (2001). Natural resistance of 129/SvJ mice to Strongyloides venezuelensis infection. Parasite Immunology 23, 659663.Google Scholar
Napier, L. E. (1949). Strongyloides stercoralis infection. Journal of Tropical Medicine and Hygiene 52, 25; passim.Google ScholarPubMed
Nawa, Y., Kiyota, M., Korenaga, M. and Kotani, M. (1985). Defective protective capacity of W/Wv mice against Strongyloides ratti infection and its reconstitution with bone marrow cells. Parasite Immunology 7, 429438.Google Scholar
Negrao-Correa, D., Silveira, M. R., Borges, C. M., Souza, D. G. and Teixeira, M. M. (2003). Changes in pulmonary function and parasite burden in rats infected with Strongyloides venezuelensis concomitant with induction of allergic airway inflammation. Infection and Immunity 71, 26072614.Google Scholar
Negrao-Correa, D., Pinho, V., Souza, D. G., Pereira, A. T., Fernandes, A., Scheuermann, K., Souza, A. L. and Teixeira, M. M. (2006). Expression of IL-4 receptor on non-bone marrow-derived cells is necessary for the timely elimination of Strongyloides venezuelensis in mice, but not for intestinal IL-4 production. International Journal for Parasitology 36, 11851195.Google Scholar
Negrao-Correa, D., Souza, D. G., Pinho, V., Barsante, M. M., Souza, A. L. and Teixeira, M. M. (2004). Platelet-activating factor receptor deficiency delays elimination of adult worms but reduces fecundity in Strongyloides venezuelensis-infected mice. Infection and Immunity 72, 11351142.Google Scholar
Noelle, R. J. and Nowak, E. C. (2010). Cellular sources and immune functions of interleukin-9. Nature reviews. Immunology 10, 683687.Google Scholar
Nolan, T. J., Megyeri, Z., Bhopale, V. M. and Schad, G. A. (1993). Strongyloides stercoralis: the first rodent model for uncomplicated and hyperinfective strongyloidiasis, the Mongolian gerbil (Meriones unguiculatus). The Journal of Infectious Diseases 168, 14791484.Google Scholar
Nolan, T. J., Rotman, H. L., Bhopale, V. M., Schad, G. A. and Abraham, D. (1995). Immunity to a challenge infection of Strongyloides stercoralis third-stage larvae in the jird. Parasite Immunology 17, 599604.CrossRefGoogle ScholarPubMed
Nolan, T. J., Bhopale, V. M. and Schad, G. A. (1999 a). Hyperinfective strongyloidiasis: Strongyloides stercoralis undergoes an autoinfective burst in neonatal gerbils. The Journal of Parasitology 85, 286289.CrossRefGoogle ScholarPubMed
Nolan, T. J., Bhopale, V. M. and Schad, G. A. (1999 b). Strongyloides stercoralis: oral transfer of parasitic adult worms produces infection in mice and infection with subsequent autoinfection in gerbils. International Journal for Parasitology 29, 10471051.Google Scholar
Nolan, T. J., Bhopale, V. M., Rotman, H. L., Abraham, D. and Schad, G. A. (2002). Strongyloides stercoralis: high worm population density leads to autoinfection in the jird (Meriones unguiculatus). Experimental Parasitology 100, 173178.Google Scholar
Nouir, N. B., Eschbach, M. L., Piedavent, M., Osterloh, A., Kingsley, M. T., Erttmann, K., Brattig, N., Liebau, E., Fleischer, B. and Breloer, M. (2012). Vaccination with Strongyloides ratti heat shock protein 60 increases susceptibility to challenge infection by induction of Th1 response. Vaccine 30, 862871.Google Scholar
O'Connell, A. E., Hess, J. A., Santiago, G. A., Nolan, T. J., Lok, J. B., Lee, J. J. and Abraham, D. (2011 a). Major basic protein from eosinophils and myeloperoxidase from neutrophils are required for protective immunity to Strongyloides stercoralis in mice. Infection and Immunity 79, 27702778.Google Scholar
O'Connell, A. E., Redding, K. M., Hess, J. A., Lok, J. B., Nolan, T. J. and Abraham, D. (2011 b). Soluble extract from the nematode Strongyloides stercoralis induces CXCR2 dependent/IL-17 independent neutrophil recruitment. Microbes and Infection/Institut Pasteur 13, 536544.Google Scholar
Ohnmacht, C., Schwartz, C., Panzer, M., Schiedewitz, I., Naumann, R. and Voehringer, D. (2010). Basophils orchestrate chronic allergic dermatitis and protective immunity against helminths. Immunity 33, 364374.Google Scholar
Onah, D. N. and Nawa, Y. (2004). Mucosal mast cell-derived chondroitin sulphate levels in and worm expulsion from FcRgamma-knockout mice following oral challenge with Strongyloides venezuelensis . Journal of Veterinary Science 5, 221226.Google Scholar
Onah, D. N., Uchiyama, F., Nagakui, Y., Ono, M., Takai, T. and Nawa, Y. (2000). Mucosal defense against gastrointestinal nematodes: responses of mucosal mast cells and mouse mast cell protease 1 during primary Strongyloides venezuelensis infection in FcRgamma-knockout mice. Infection and Immunity 68, 49684971.Google Scholar
Ovington, K. S., McKie, K., Matthaei, K. I., Young, I. G. and Behm, C. A. (1998). Regulation of primary Strongyloides ratti infections in mice: a role for interleukin-5. Immunology 95, 488493.Google Scholar
Padigel, U. M., Lee, J. J., Nolan, T. J., Schad, G. A. and Abraham, D. (2006). Eosinophils can function as antigen-presenting cells to induce primary and secondary immune responses to Strongyloides stercoralis . Infection and Immunity 74, 32323238.Google Scholar
Padigel, U. M., Hess, J. A., Lee, J. J., Lok, J. B., Nolan, T. J., Schad, G. A. and Abraham, D. (2007 a). Eosinophils act as antigen-presenting cells to induce immunity to Strongyloides stercoralis in mice. The Journal of Infectious Diseases 196, 18441851.CrossRefGoogle ScholarPubMed
Padigel, U. M., Stein, L., Redding, K., Lee, J. J., Nolan, T. J., Schad, G. A., Birnbaumer, L. and Abraham, D. (2007 b). Signaling through Galphai2 protein is required for recruitment of neutrophils for antibody-mediated elimination of larval Strongyloides stercoralis in mice. Journal of Leukocyte Biology 81, 11201126.Google Scholar
Paterson, S., Wilkes, C., Bleay, C. and Viney, M. E. (2008). Immunological responses elicited by different infection regimes with Strongyloides ratti . PloS ONE 3, e2509.Google Scholar
Peres, R. S., Chiuso-Minicucci, F., da Rosa, L. C., Domingues, A., Zorzella-Pezavento, S. F., Franca, T. G., Ishikawa, L. L., do Amarante, A. F. and Sartori, A. (2013). Previous contact with Strongyloides venezuelensis contributed to prevent insulitis in MLD-STZ diabetes. Experimental Parasitology 134, 183189.CrossRefGoogle ScholarPubMed
Peters, N. C., Egen, J. G., Secundino, N., Debrabant, A., Kimblin, N., Kamhawi, S., Lawyer, P., Fay, M. P., Germain, R. N. and Sacks, D. (2008). In vivo imaging reveals an essential role for neutrophils in leishmaniasis transmitted by sand flies. Science 321, 970974.Google Scholar
Prendki, V., Fenaux, P., Durand, R., Thellier, M. and Bouchaud, O. (2011). Strongyloidiasis in man 75 years after initial exposure. Emerging Infectious Diseases 17, 931932.Google Scholar
Reber, L. L., Marichal, T. and Galli, S. J. (2012). New models for analyzing mast cell functions in vivo . Trends in Immunology 33, 613625.Google Scholar
Reynolds, D. S., Stevens, R. L., Lane, W. S., Carr, M. H., Austen, K. F. and Serafin, W. E. (1990). Different mouse mast cell populations express various combinations of at least six distinct mast cell serine proteases. Proceedings of the National Academy of Sciences of the United States of America 87, 32303234.Google Scholar
Robson, D., Beeching, N. J. and Gill, G. V. (2009). Strongyloides hyperinfection syndrome in British veterans. Annals of Tropical Medicine and Parasitology 103, 145148.Google Scholar
Rodrigues, R. M., Silva, N. M., Goncalves, A. L., Cardoso, C. R., Alves, R., Goncalves, F. A., Beletti, M. E., Ueta, M. T., Silva, J. S. and Costa-Cruz, J. M. (2009). Major histocompatibility complex (MHC) class II but not MHC class I molecules are required for efficient control of Strongyloides venezuelensis infection in mice. Immunology 128, 432441.Google Scholar
Rodrigues, R. M., Cardoso, C. R., Goncalves, A. L., Silva, N. M., Massa, V., Alves, R., Ueta, M. T., Silva, J. S. and Costa-Cruz, J. M. (2013). Increased susceptibility to Strongyloides venezuelensis infection is related to the parasite load and absence of major histocompatibility complex (MHC) class II molecules. Experimental Parasitology 135, 580586.Google Scholar
Rotman, H. L., Yutanawiboonchai, W., Brigandi, R. A., Leon, O., Nolan, T. J., Schad, G. A. and Abraham, D. (1995). Strongyloides stercoralis: complete life cycle in SCID mice. Experimental Parasitology 81, 136139.Google Scholar
Rotman, H. L., Yutanawiboonchai, W., Brigandi, R. A., Leon, O., Gleich, G. J., Nolan, T. J., Schad, G. A. and Abraham, D. (1996). Strongyloides stercoralis: eosinophil-dependent immune-mediated killing of third stage larvae in BALB/cByJ mice. Experimental Parasitology 82, 267278.Google Scholar
Rotman, H. L., Schnyder-Candrian, S., Scott, P., Nolan, T. J., Schad, G. A. and Abraham, D. (1997). IL-12 eliminates the Th-2 dependent protective immune response of mice to larval Strongyloides stercoralis . Parasite Immunology 19, 2939.Google Scholar
Ruano, A. L., Lopez-Aban, J., Gajate, C., Mollinedo, F., De Melo, A. L. and Muro, A. (2012). Apoptotic mechanisms are involved in the death of Strongyloides venezuelensis after triggering of nitric oxide. Parasite Immunology 34, 570580.CrossRefGoogle ScholarPubMed
Ruano, A. L., Lopez-Aban, J., Fernandez-Soto, P., de Melo, A. L. and Muro, A. (2015). Treatment with nitric oxide donors diminishes hyperinfection by Strongyloides venezuelensis in mice treated with dexamethasone. Acta Tropica 152, 9095.Google Scholar
Sakata-Yanagimoto, M., Sakai, T., Miyake, Y., Saito, T. I., Maruyama, H., Morishita, Y., Nakagami-Yamaguchi, E., Kumano, K., Yagita, H., Fukayama, M., Ogawa, S., Kurokawa, M., Yasutomo, K. and Chiba, S. (2011). Notch2 signaling is required for proper mast cell distribution and mucosal immunity in the intestine. Blood 117, 128134.Google Scholar
Sakata-Yanagimoto, M. and Chiba, S. (2015). Notch2 signaling in mast cell development and distribution in the intestine. Methods in Molecular Biology 1220, 7989.CrossRefGoogle ScholarPubMed
Sasaki, Y., Yoshimoto, T., Maruyama, H., Tegoshi, T., Ohta, N., Arizono, N. and Nakanishi, K. (2005). IL-18 with IL-2 protects against Strongyloides venezuelensis infection by activating mucosal mast cell-dependent type 2 innate immunity. The Journal of Experimental Medicine 202, 607616.Google Scholar
Sato, Y. and Toma, H. (1990). Strongyloides venezuelensis infections in mice. International Journal for Parasitology 20, 5762.Google Scholar
Schilter, H. C., Pereira, A. T., Eschenazi, P. D., Fernandes, A., Shim, D., Sousa, A. L., Teixeira, M. M. and Negrao-Correa, D. (2010). Regulation of immune responses to Strongyloides venezuelensis challenge after primary infection with different larvae doses. Parasite Immunology 32, 184192.Google Scholar
Schmitt, E., Klein, M. and Bopp, T. (2014). Th9 cells, new players in adaptive immunity. Trends in Immunology 35, 6168.Google Scholar
Shintoku, Y., Kadosaka, T., Kimura, E., Takagi, H., Kondo, S. and Itoh, M. (2013). Intestinal mast cells and eosinophils in relation to Strongyloides ratti adult expulsion from the small and large intestines of rats. Parasitology 140, 626631.Google Scholar
Silveira, M. R., Nunes, K. P., Cara, D. C., Souza, D. G., Correa, A. Jr., Teixeira, M. M. and Negrao-Correa, D. (2002). Infection with Strongyloides venezuelensis induces transient airway eosinophilic inflammation, an increase in immunoglobulin E, and hyperresponsiveness in rats. Infection and Immunity 70, 62636272.Google Scholar
Soblik, H., Younis, A. E., Mitreva, M., Renard, B. Y., Kirchner, M., Geisinger, F., Steen, H. and Brattig, N. W. (2011). Life cycle stage-resolved proteomic analysis of the excretome/secretome from Strongyloides ratti--identification of stage-specific proteases. Molecular & Cellular Proteomics 10(12), M111.010157. doi: 10.1074/mcp.M111.010157.CrossRefGoogle ScholarPubMed
Stein, L. H., Redding, K. M., Lee, J. J., Nolan, T. J., Schad, G. A., Lok, J. B. and Abraham, D. (2009). Eosinophils utilize multiple chemokine receptors for chemotaxis to the parasitic nematode Strongyloides stercoralis . Journal of Innate Immunity 1, 618630.Google Scholar
Takai, T., Li, M., Sylvestre, D., Clynes, R. and Ravetch, J. V. (1994). FcR gamma chain deletion results in pleiotrophic effector cell defects. Cell 76, 519529.Google Scholar
Takamure, A. (1995). Migration route of Strongyloides venezuelensis in rodents. International Journal for Parasitology 25, 907911.Google Scholar
Uchikawa, R., Ichiki, H. and Komaki, E. (1991). Antibody responses and protective immunity in rats receiving repeated inoculations of Strongyloides ratti . The Journal of Parasitology 77, 737741.Google Scholar
Viney, M. E. and Lok, J. B. (2015). The biology of Strongyloides spp. WormBook, ed. The C. elegans Research Community, WormBook, doi: 10.1895/wormbook.1.141.2, http://www.wormbook.org.Google Scholar
Wang, C. C., Nolan, T. J., Schad, G. A. and Abraham, D. (2001). Infection of mice with the helminth Strongyloides stercoralis suppresses pulmonary allergic responses to ovalbumin. Clinical and Experimental Allergy: Journal of the British Society for Allergy and Clinical Immunology 31, 495503.Google Scholar
Wang, H. B. and Weller, P. F. (2008). Pivotal advance: eosinophils mediate early alum adjuvant-elicited B cell priming and IgM production. Journal of Leukocyte Biology 83, 817821.Google Scholar
Watanabe, K., Noda, K., Hamano, S., Koga, M., Kishihara, K., Nomoto, K. and Tada, I. (2000). The crucial role of granulocytes in the early host defense against Strongyloides ratti infection in mice. Parasitology Research 86, 188193.Google Scholar
Watanabe, K., Hamano, S., Yada, S., Noda, K., Kishihara, K., Nomoto, K. and Tada, I. (2001). The effect of interleukin-4 on the induction of intestinal mast cells and chronological cytokine profiles during intestinal nematode Strongyloides ratti infection. Parasitology Research 87, 149154.Google Scholar
Watanabe, K., Sasaki, O., Hamano, S., Kishihara, K., Nomoto, K., Tada, I. and Aoki, Y. (2003). Strongyloides ratti: the role of interleukin-5 in protection against tissue migrating larvae and intestinal adult worms. Journal of Helminthology 77, 355361.CrossRefGoogle ScholarPubMed
Weatherhead, J. E. and Mejia, R. (2014). Immune response to infection with Strongyloides stercoralis in patients with infection and hyperinfection. Current Tropical Medicine Reports 1, 229233.Google Scholar
Wernersson, S. and Pejler, G. (2014). Mast cell secretory granules: armed for battle. Nature Reviews. Immunology 14, 478494. doi: 10.1038/nri3690 Google Scholar
Wilkes, C. P., Bleay, C., Paterson, S. and Viney, M. E. (2007). The immune response during a Strongyloides ratti infection of rats. Parasite Immunology 29, 339346.Google Scholar
Yasuda, K., Muto, T., Kawagoe, T., Matsumoto, M., Sasaki, Y., Matsushita, K., Taki, Y., Futatsugi-Yumikura, S., Tsutsui, H., Ishii, K. J., Yoshimoto, T., Akira, S. and Nakanishi, K. (2012). Contribution of IL-33-activated type II innate lymphoid cells to pulmonary eosinophilia in intestinal nematode-infected mice. Proceedings of the National Academy of Sciences of the United States of America 109, 34513456.Google Scholar
Yoshimoto, T., Yasuda, K., Mizuguchi, J. and Nakanishi, K. (2007). IL-27 suppresses Th2 cell development and Th2 cytokines production from polarized Th2 cells: a novel therapeutic way for Th2-mediated allergic inflammation. Journal of Immunology 179, 44154423.Google Scholar