Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-24T00:01:13.114Z Has data issue: false hasContentIssue false

A spectrum of functional genes mobilized after Trichinella spiralis infection in skeletal muscle

Published online by Cambridge University Press:  16 December 2004

Z. WU
Affiliation:
Department of Parasitology, Gifu University Graduate School of Medicine, Yanagido 1-1, Gifu 501-1194, Japan
I. NAGANO
Affiliation:
Department of Parasitology, Gifu University Graduate School of Medicine, Yanagido 1-1, Gifu 501-1194, Japan
T. BOONMARS
Affiliation:
Department of Parasitology, Gifu University Graduate School of Medicine, Yanagido 1-1, Gifu 501-1194, Japan
Y. TAKAHASHI
Affiliation:
Department of Parasitology, Gifu University Graduate School of Medicine, Yanagido 1-1, Gifu 501-1194, Japan

Abstract

Trichinella spiralis infection causes the transformation of infected muscle cells, which leads to nurse cell formation. To search for the candidate genes responsible for nurse cell formation, cDNA microarray analysis of muscle tissues was performed before and after Trichinella infection. The Atlas mouse 1.2 cDNA expression microarray revealed the expression profiles of 1176 known genes. Out of these, 311 gene expressions were detected in normal and/or infected muscles. After the infection, 184 out of the 311 genes increased in expression by more than 3-fold. These included genes responsible for cell differentiation, proliferation, cell cycle and apoptosis. Thus this study suggested candidate genes for further investigation to dissect the molecular mechanisms of nurse cell formation.

Type
Research Article
Copyright
© 2005 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

ABATE-SHEN, C. ( 2002). Deregulated homeobox gene expression in cancer: cause or consequence? Nature Reviews Cancer 2, 777785.Google Scholar
BARUCH, A. M. & DESPOMMIER, D. D. ( 1991). Blood vessels in Trichinella spiralis infections: a study using vascular casts. Journal of Parasitology 77, 99103.CrossRefGoogle Scholar
BENDALL, A. J., DING, J., HU, G., SHEN, M. M. & ABATE-SHEN, C. ( 1999). Msx1 antagonizes the myogenic activity of Pax3 in migrating limb muscle precursors. Development 126, 49654976.Google Scholar
BOONMARS, T., WU, Z., NAGANO, I., NAKADA, T. & TAKAHASHI, Y. ( 2004 a). Differences and similarities of nurse cells in cysts of T. spiralis and T. pseudospiralis. Journal of Helminthology 78, 716.Google Scholar
BOONMARS, T., WU, Z., NAGANO, I. & TAKAHASHI, Y. ( 2004 b). Expression of apoptosis-related factors in muscles infected with T. spiralis. Parasitology 128, 323332.Google Scholar
CAPO, V. A., DESPOMMIER, D. D. & POLVERE, R. I. ( 1998). Trichinella spiralis: vascular endothelial growth factor is up-regulated within the nurse cell during the early phase of its formation. Journal of Parasitology 84, 209214.CrossRefGoogle Scholar
COLEMAN, M. E., DEMAYO, F., YIN, K. C., LEE, H. M., GESKE, R., MONTGOMERY, C. & SCHWARTZ, R. J. ( 1995). Myogenic vector expression of insulin-like growth factor I stimulates muscle cell differentiation and myofiber hypertrophy in transgenic mice. Journal of Biological Chemistry 270, 1210912116.CrossRefGoogle Scholar
CORNELISON, D. D., FILLA, M. S., STANLEY, H. M., RAPRAEGER, A. C. & OLWIN, B. B. ( 2001). Syndecan-3 and syndecan-4 specifically mark skeletal muscle satellite cells and are implicated in satellite cell maintenance and muscle regeneration. Developmental Biology 239, 7994.CrossRefGoogle Scholar
DESPOMMIER, D. D. ( 1975). Adaptive changes in muscle fibers infected with Trichinella spiralis. American Journal of Pathology 78, 477496.Google Scholar
DESPOMMIER, D. D. ( 1993). Trichinella spiralis and the concept of niche. Journal of Parasitology 79, 472482.CrossRefGoogle Scholar
DESPOMMIER, D. D. ( 1998). How does Trichinella spiralis make itself at home? Parasitology Today 14, 318323.Google Scholar
DESPOMMIER, D. D., GOLD, A. M., BUCK, S. W., CAPO, V. & SILBERSTEIN, D. ( 1990). Trichinella spiralis: secreted antigen of the infective L1 larva localizes to the cytoplasm and nucleoplasm of infected host cells. Experimental Parasitology 71, 2738.CrossRefGoogle Scholar
DOUMIT, M. E., COOK, D. R. & MERKEL, R. A. ( 1993). Fibroblast growth factor, epidermal growth factor, insulin-like growth factors, and platelet-derived growth factor-BB stimulate proliferation of clonally derived porcine myogenic satellite cells. Journal of Cellular Physiology 157, 326332.CrossRefGoogle Scholar
ENGERT, J. C., BERGLUND, E. B. & ROSENTHAL, N. ( 1996). Proliferation precedes differentiation in IGF-I-stimulated myogenesis. Journal of Cell Biology 135, 431440.CrossRefGoogle Scholar
FLOSS, T., ARNOLD, H. H. & BRAUN, T. ( 1997). A role for FGF-6 in skeletal muscle regeneration. Genes and Development 11, 20402051.CrossRefGoogle Scholar
FRIDAY, B. B. & PAVLATH, G. K. ( 2001). A calcineurin- and NFAT-dependent pathway regulates Myf5 gene expression in skeletal muscle reserve cells. Journal of Cell Science 114, 303310.Google Scholar
GABRYEL, P., GUSTOWSKA, L. & BLOTNA-FILIPIAK, M. ( 1995). The unique and specific transformation of muscle cell infected with Trichinella spiralis. Basic and Applied Myology 5, 213222.Google Scholar
HAWKE, T. J. & GARRY, D. J. ( 2001). Myogenic satellite cells: physiology to molecular biology. Journal of Applied Physiology 91, 534551.CrossRefGoogle Scholar
HU, G., LEE, H., PRICE, S. M., SHEN, M. M. & ABATE-SHEN, C. ( 2001). Msx homeobox genes inhibit differentiation through upregulation of cyclin D1. Development 128, 23732384.Google Scholar
JACKS, T. & WEINBERG, R. A. ( 1996). Cell-cycle control and its watchman. Nature, London 381, 643644.CrossRefGoogle Scholar
JASMER, D. P. ( 1993). Trichinella spiralis infected skeletal muscle cells arrest in G2/M and cease muscle gene expression. Journal of Cell Biology 121, 785793.CrossRefGoogle Scholar
KASTNER, S., ELIAS, M. C., RIVERA, A. J. & YABLONKA-REUVENI, Z. ( 2000). Gene expression patterns of the fibroblast growth factors and their receptors during myogenesis of rat satellite cells. Journal of Histochemistry and Cytochemistry 48, 10791096.CrossRefGoogle Scholar
KRISHAN, K. & DHOOT, G. K. ( 1996). Changes in some troponin and insulin-like growth factor messenger ribonucleic acids in regenerating and denervated skeletal muscles. Journal of Muscle Research and Cell Motility 17, 513521.CrossRefGoogle Scholar
LEE, D. L., KO, R. C., YI, X. Y. & YEUNG, M. H. ( 1991). Trichinella spiralis: antigenic epitopes from the stichocytes detected in the hypertrophic nuclei and cytoplasm of the parasitized muscle fibre (nurse cell) of the host. Parasitology 102, 117123.CrossRefGoogle Scholar
LEVINOVITZ, A., JENNISCHE, E., OLDFORS, A., EDWALL, D. & NORSTEDT, G. ( 1992). Activation of insulin-like growth factor II expression during skeletal muscle regeneration in the rat: correlation with myotube formation. Molecular Endocrinology 6, 12271234.Google Scholar
LIU, M., LEE, M. H., COHEN, M., BOMMAKANTI, M. & FREEDMAN, L. P. ( 1996). Transcriptional activation of the Cdk inhibitor p21 by vitamin D3 leads to the induced differentiation of the myelomonocytic cell line U937. Genes and Development 10, 142153.CrossRefGoogle Scholar
MATSUO, A., WU, Z., NAGANO, I. & TAKAHASHI, Y. ( 2000). Five types of nuclei present in the capsule of Trichinella spiralis. Parasitology 121, 203210.CrossRefGoogle Scholar
MATUSHANSKY, I., RADPARVAR, F. & SKOULTCHI, A. I. ( 2000). Manipulating the onset of cell cycle withdrawal in differentiated erythroid cells with cyclin-dependent kinases and inhibitors. Blood 96, 27552764.Google Scholar
NAYA, F. S. & OLSON, E. ( 1999). MEF2: a transcriptional target for signaling pathways controlling skeletal muscle growth and differentiation. Current Opinion in Cell Biology 11, 683688.CrossRefGoogle Scholar
ODELBERG, S. J., KOLLHOFF, A. & KEATING, M. T. ( 2000). Dedifferentiation of mammalian myotubes induced by msx1. Cell 103, 10991109.CrossRefGoogle Scholar
OLSON, E. N. & ROSENTHAL, N. ( 1994). Homeobox genes and muscle patterning. Cell 79, 912.CrossRefGoogle Scholar
PARKER, M. H., SEALE, P. & RUDNICKI, M. A. ( 2003). Looking back to the embryo: defining transcriptional networks in adult myogenesis. Nature Reviews Genetics 4, 497507.CrossRefGoogle Scholar
PINES, J. ( 1997). Cyclin-dependent kinase inhibitors: the age of crystals. Biochimica et Biophysica Acta 1332, M3942.CrossRefGoogle Scholar
POLVERE, R. I., KABBASH, C. A., CAPO, V. A., KADAN, I. & DESPOMMIER, D. D. ( 1997). Trichinella spiralis: synthesis of type IV and type VI collagen during nurse cell formation. Experimental Parasitology 86, 191199.CrossRefGoogle Scholar
REED, S. I., BAILLY, E., DULIC, V., HENGST, L., RESNITZKY, D. & SLINGERLAND, J. ( 1994). G1 control in mammalian cells. Journal of Cell Science 18, 6973.CrossRefGoogle Scholar
RESHEF, R., MAROTO, M. & LASSAR, A. B. ( 1998). Regulation of dorsal somitic cell fates: BMPs and Noggin control the timing and pattern of myogenic regulator expression. Genes and Development 12, 290303.CrossRefGoogle Scholar
SEALE, P. & RUDNICKI, M. A. ( 2000). A new look at the origin, function, and “stem-cell” status of muscle satellite cells. Developmental Biology 218, 115124.CrossRefGoogle Scholar
SMITH, C. K., JANNEY, M. J. & ALLEN, R. E. ( 1994). Temporal expression of myogenic regulatory genes during activation, proliferation, and differentiation of rat skeletal muscle satellite cells. Journal of Cellular Physiology 159, 379385.CrossRefGoogle Scholar
SONG, K., WANG, Y. & SASSOON, D. ( 1992). Expression of Hox-7.1 in myoblasts inhibits terminal differentiation and induces cell transformation. Nature, London 360, 477481.Google Scholar
STAMLER, J. S. & MEISSNER, G. ( 2001). Physiology of nitric oxide in skeletal muscle. Physiological Reviews 81, 209237.CrossRefGoogle Scholar
TATSUMI, R., SHEEHAN, S. M., IWASAKI, H., HATTORI, A. & ALLEN, R. E. ( 2001). Mechanical stretch induces activation of skeletal muscle satellite cells in vitro. Experimental Cell Research 267, 107114.CrossRefGoogle Scholar
WEINBERG, R. A. ( 1996). The molecular basis of carcinogenesis: understanding the cell cycle clock. Cytokines Molecular Therapy 2, 105110.Google Scholar
WOLOSHIN, P., SONG, K., DEGNIN, C., KILLARY, A. M., GOLDHAMER, D. J., SASSOON, D. & THAYER, M. J. ( 1995). MSX1 inhibits myoD expression in fibroblast x 10T1/2 cell hybrids. Cell 82, 611620.CrossRefGoogle Scholar
WOZNEY, J. M. ( 2002). Overview of bone morphogenetic proteins. Spine 27, S28.CrossRefGoogle Scholar
WU, Z., MATSUO, A., NAKADA, T., NAGANO, I. & TAKAHASHI, Y. ( 2001). Different response of satellite cells in the kinetics of myogenic regulatory factors and ultrastructural pathology after Trichinella spiralis and T. pseudospiralis infection. Parasitology 123, 8594.CrossRefGoogle Scholar
WUARAIN, L. & NURSE, P. ( 1996). Regulating S phase: CDKs, licensing and proteolysis. Cell 85, 785787.CrossRefGoogle Scholar
YAO, C., BOHNET, S. & JASMER, D. P. ( 1998). Host nuclear abnormalities and depletion of nuclear antigens induced in Trichinella spiralis-infected muscle cells by the anthelmintic mebendazole. Molecular and Biochemical Parasitology 96, 113.CrossRefGoogle Scholar
YAO, C. & JASMER, D. P. ( 1998). Nuclear antigens in Trichinella spiralis infected muscle cells: nuclear extraction, compartmentalization and complex formation. Molecular and Biochemical Parasitology 92, 207218.CrossRefGoogle Scholar