Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-28T06:04:45.993Z Has data issue: false hasContentIssue false

The sizes of viruses and the methods employed in their estimation

Published online by Cambridge University Press:  06 April 2009

Roy Markham
Affiliation:
Plant virus Research Station, Molteno Institute and Strangeways Laboratory, Cambridge
Kenneth M. Smith
Affiliation:
Plant virus Research Station, Molteno Institute and Strangeways Laboratory, Cambridge
Douglas Lea
Affiliation:
Plant virus Research Station, Molteno Institute and Strangeways Laboratory, Cambridge

Extract

In this review we have given an account of the various methods which are available to determine the size of virus particles. In § IV we have endeavoured to bring the ultrafiltration method into agreement with other methods by suggesting a different factor for converting pore size to virus size from the factors commonly used. Throughout we have recognized the probability that most viruses are hydrated in solution and have distinguished between the size and molecular weight in solution and the size and molecular weight when dried.

In § VII we have given formulae suitable for interpreting centrifugation and diffusion data when the possibility of hydration is contemplated.

It is evident that this complication, added to that of shape, makes it necessary for several measurements by different methods to be made before one can claim to know the size of a virus. For this reason, only in the cases of three viruses have we thought the data sufficiently adequate to enable the size and shape and molecular weight of the Virus, both dry and hydrated, to be stated. These three viruses, tobacco mosaic, tomato bushy stunt and vaccinia respectively, are separately discussed in § X.

It will be clear from the preceding sections that, while the position regarding our knowledge of the absolute sizes of viruses is far from satisfactory, there has been amassed a large amount of data bearing on this subject. We should, however, point out that we have found it necessary to select what we consider to be the best experimental data in some cases and that there may be conflicting ideas expressed by various authorities. Frampton (1942) has studied the electron microscope photographs published by Stanley & Anderson (1941) and Anderson & Stanley (1941) and arrives at an entirely different estimate of the length of tobacco mosaic virus. Kausche, Pfankuch & Ruska (1939) reported one value for the length of this virus which is approximately half that given by Stanley & Anderson. Electron photomicrographs published by von Ardenne (1940) and Holmes (1941) for what are probably strains of the same virus, also suggest that the values given should not be taken as absolute. Frampton (1939 a, b), on the basis of diffusion and viscosity experiments and the stream birefringence of this virus, has suggested previously that it forms a gel at any concentration and therefore cannot be said to have a size. Lauffer (1940) has given reasons for supposing this argument to be incorrect. Bernal & Fankuchen (1941a) have discussed the possibility of tobacco mosaic virus particles being shorter than the value taken from Kausche et al. (1939) and conclude that in the plant itself the particle may be as short as 100 mμ.

In obtaining values of size arid shape from electron microscope data we have made the assumptions, which may not be correct, that long, thin viruses shrink in width rather than in length on drying and that almost spherical viruses contract approximately evenly in all directions. At the moment there would seem to be no method of proving or disproving the truth of these assumptions, but we believe it unlikely that drying will result in such a gross change in shape that it would invalidate our calculations. For instance, in the case of haemocyanin from Helix pomatia, it seems improbable that, on drying, an already anhydrous ellipsoidal molecule of 66 × 15·32 mμ would contract in length and expand in-width to form a sphere of some 24 mμ diameter.

In our treatment of hydration we have found it necessary to regard the density and volume of ‘bound’ water as being the same as that of water in bulk, which may not be entirely true. However, we regard the total volume occupied by water in cases of great hydration, as shown by tomato bushy stunt virus, as being not markedly smaller than that of the same mass of free water. It is, nevertheless, a well-established fact that in certain cases, gelatin for example (Svedberg, 1924), a small contraction in volume does take place when dry protein is added to water. This phenomenon does not, however, necessitate the assumption that the water of hydration, is denser than ordinary water, and can be explained in other ways.

The viscosity of solutions of viruses, especially the rod-shaped plant viruses, has attracted much attention as a method of finding frictional and axial ratios of viruses (Frampton, 1939 a, b; Lauffer, 1938; Loring, 1938; Neurath, Cooper, Sharp, Taylor, Beard & Beard, 1941; Kobinson, 1939 a, b; Stanley, 1939), but, in addition to the lack of experimental verification of the formulae used, in many cases (Robinson, 1939 a, b; Frampton, 1939 a, b) the formulae have been applied to experimental results obtained in circumstances which exclude the fundamental postulates on which the formulae are based. For this reason we have omitted a detailed discussion of such methods.

It would appear that in order to obtain evidence as to the size of a virus it is desirable to study the virus in as purified a form as possible and also to show that when ‘homo-geneous’ preparations are obtained, they do not consist merely of macromolecular substances contaminated with a small quantity of virus. Furthermore it is desirable to obtain at least sufficient data to enable one to assess both size and shape of the particles rather than to assume some shape or some density value which may be incorrect.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1942

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Adair, G. S. (1939). Discussion on the protein molecule. Proc. Roy. Soc. B, 127, 18.Google Scholar
Adair, G. S. & Adair, M. E. (1936) The densities of protein crystals and the hydration of proteins. Proc. Roy. Soc. B, 120, 422.Google Scholar
Anderson, T. F. & Stanley, W. M. (1941) A study by means of the electron microscope of the reaction between tobacco mosaic virus and its antiserum. J. Biol. Chem. 139, 339.CrossRefGoogle Scholar
Anson, M. L. & Northrop, J. H. (19361937). The calibration of diffusion membranes and the calculation of molecular volumes from diffusion coefficients. J. Gen. Physiol. 20, 575.CrossRefGoogle Scholar
von Ardenne, M. (1940) Ergebnisse einer Elektron-Übermikroscop-Anlage. Naturwissenschaften, 28, 113.Google Scholar
Barnard, J. E. (1925) The microscopical examination of filterable viruses. Lancet, 2, 117.Google Scholar
Barnard, J. E.(1938) Elementary bodies in foot-and-mouth disease and vesicular stomatitis. Proc. Roy. Soc. B, 124, 107.Google Scholar
Barnard, J. E. & Elford, W. J. (1931) The causative organism in infectious ectromelia. Proc. Roy. Soc. B, 109, 360.Google Scholar
Bauer, J. H. & Cox, H. R. (1935) Ultrafiltration of the virus of vesicular stomatitis. Proc. Soc. Exp. Biol., N.Y., 32, 567.Google Scholar
Bauer, J. H., Cox, H. R. & Olitsky, P. K. (1935) Ultrafiltration of the virus of equine encephalomyelitis. Proc. Soc. Exp. Biol N.Y., 33, 378.Google Scholar
Bauer, J. H., Fite, G. L. & Webster, L. T. (1934) Ultrafiltration experiments with the encephalitis virus from the St Louis epidemic. Proc. Soc. Exp. Biol., N.Y., 31, 696.Google Scholar
Bauer, J. H. & Hughes, , Thomas, P. (19341935). The preparation of the graded collodion membranes of Elford and their use in the study of filterable viruses. J. Gen. Physiol. 18, 143.CrossRefGoogle Scholar
Bauer, J. H. & Hughes, , Thomas, P. (1935) Ultrafiltration studies with yellow fever virus. Amer. J. Hyg. 21,101.Google Scholar
Bawden, F. C. & Pirie, N. W. (1937) The isolation and some properties of liquid crystalline substances from solanaceous plants infected with three strains of tobacco mosaic virus. Proc. Roy. Soc. B, 123,274.Google Scholar
Bawden, F. C., Pirie, N. W., Bernal, J. D. & Fankuchen, I. (1936) Liquid crystalline substances from virus-infected plants. Nature, Lond., 138, 1051.CrossRefGoogle Scholar
Beard, J. W., Finklestein, H. & Wyckoff, R. W. G. (1938) The pH. stability of the elementary bodies of vaccinia. J. Immunol. 35, 415.Google Scholar
Beard, J. W. & Wyckoff, R. W. G. (1937) The isolation of a homogeneous heavy protein from virus-induced rabbit papillomas. Science, 85, 201–2.CrossRefGoogle ScholarPubMed
Bechhold, H. (1907) Kolloidstudien mit der Filtrationsmethode. Z. phys. Chem. 60, 257.Google Scholar
Bechhold, H. (1908) Durchlässigkeit von Ultrafiltern. Z. phys. Chem. 64, 328.Google Scholar
Bechhold, H. & Schlesinger, M. (1931 a). Die Grössenbestimmung von subvisiblen Virus durch Zentrifugieren. Biochem. Z. 236, 386.Google Scholar
Bechhold, H. & Schlesinger, M. (1931 b). Zentrifuge und Filter zur Bestimmung der absoluten Grösse von subvisiblen Erregern (Pockenvaccine und Hühnerpest). Z. Hyg. InfektKr. 112, 668.CrossRefGoogle Scholar
Bechhold, H. & Schlesinger, M. (1933 a). Die Grössenbestimmung von Herpesvirus durch Zentri-fugierversuche. Z. Hyg. InfektKr. 115, 342.CrossRefGoogle Scholar
Bechhold, H. & Schlesinger, M. (1933 b). Die Teilchengrösse des Erregers der Kikuth-Gollubschen Kanarienvogel Krankheit. Z. Hyg. InfektKr. 115, 354.CrossRefGoogle Scholar
Bechhold, H. & Schlesinger, M. (1933 c). Grösse von Virus der Mosaikkrankheit der Tabakpflanze. Phytopath Z. 6, 627.Google Scholar
Bechhold, H., Schlesinger, M. & Silbereisen, K. (1931) Porenweite von Ultrafiltern. Kolloidzchr. 55, 172.Google Scholar
Bechhold, H. & Villa, L. (1926) Die Sichtbarmachung subvisiblen Gebilde. Z. Hyg. InfektKr. 105,601.Google Scholar
Bernal, J. D. & Fankuchen, I. (1937) Structure types of protein ‘crystals’ from virus-infected plants. Nature, Lond., 139, 923.Google Scholar
Bernal, J. D. & Fankuchen, I. (1941 a). X-ray and crystallographic studies of plant-virus preparations. I and II. J. Gen. Physiol. 25, 111.Google Scholar
Bernal, J. D. & Fankuchen, I. (1941 b). X-ray and crystallographic studies of plant-virus preparations. III. J. Gen. Physiol. 25, 147.Google Scholar
Bernal, J. D., Fankuchen, I. & Riley, D. P. (1938) Structure of the crystals of tomato bushy stunt virus preparations. Nature, Lond., 142, 1075.Google Scholar
Bourdillon, J. (1941 a). A new method for the study of diffusion of biologically active material. J. Gen. Physiol. 24, 459.CrossRefGoogle Scholar
Bourdillon, J. (1941 b). Analytical diffusion of influenza virus and mouse encephalomyelitis virus. J. Gen. Physiol. 25, 263.Google Scholar
Broom, J. C. & Findlay, G. M. (1933) The filtration of Rift Valley fever virus through graded collodion membranes. Brit. J. Exp. Path. 14, 179.Google Scholar
Broom, J. C. & Findlay, G. M. (1936) Experiments on the filtration of climatic bubo. Brit. J. Exp. Path. 17, 135.Google Scholar
Burnet, F. M. (1933 a). The classification of dysentery-coli bacteriophages. J. Path. Bact. 36, 307.CrossRefGoogle Scholar
Burnet, F. M. (1933 b). Specific agglutination of bacteriophage particles. Brit. J. Exp. Path. 14, 302.Google Scholar
Chambers, L. A. & Henle, W. (1941) Precipitation of active influenza A virus from extra-embryonic fluids by protamine. Proc. Soc. Exp. Biol., N.Y., 48, 481.CrossRefGoogle Scholar
Clifton, C. E., Schultz, E. W. & Gebhardt, L. P. (1931) Ultrafiltration studies on the virus of poliomyelitis. J. Bact. 22, 7.Google Scholar
Coles, A. C. (1937) A microscopical inquiry into the aetiology of dengue, sandfly and yellow fever. J. Trop. Med. Hyg. 40, 209.Google Scholar
Coles, A. C. (1941) Size and visibility of filterable virus bodies. Brit. Med. J. no. 4214, p. 507.Google Scholar
Einstein, A. & MÜhesam, H. (1923) Experimentelle Bestimmung der Kanalweite von Filtern. Dtsch. med. Wschr. 49, 1012.Google Scholar
Eisenberg-Merling, K. B. (1941) Microscopical observations on the bacteriophage of the Staphylococcus. J. Path. Bact. 53, 385.Google Scholar
Elford, W. J. (1931) A new series of graded collodion membranes suitable for general bacteriological use, especially in filterable virus studies. J. Path. Bact. 34, 505.Google Scholar
Elford, W. J. (1933) The principles of ultrafiltration as applied in biological studies. Proc. Roy. Soc. B, 112, 384.Google Scholar
Elford, W. J. (1936) Centrifugation studies. I. Critical examination of a new method as applied to the sedimentation of bacteria, bacteriophage and proteins. Brit. J. Exp.. Path. 17, 399.Google Scholar
Elford, W. J. (1938) New aspects of virus diseases. Proc. Roy. Soc. B, 125, 309.Google Scholar
Elford, W. J. & Andrewes, C. H. (1932 a). Filtration of vaccinia virus through gradocol membranes. Brit. J. Exp. Path. 13, 36.Google Scholar
Elford, W. J. & Andrewes, C. H. (1932 b). The sizes of different bacteriophages. Brit. J. Exp. Path. 13, 446.Google Scholar
Elford, W. J. & Andrewes, C. H. (1936) Centrifugation studies. II. The viruses of vaccinia, influenza and Rous sarcoma. Brit. J. Exp. Path. 17, 422.Google Scholar
Elford, W. J. & Andrewes, C. H. (1938) Estimation of the size of a fowl tumour virus by filtration through graded membranes. Brit. J. Exp. Path. 16, 61.Google Scholar
Elford, W. J., Andrewes, C. H. & Tang, F. F. (1936) The sizes of the viruses of human and swine influenza as determined by ultrafiltration. Brit. J. Exp. Path. 17, 51.Google Scholar
Elford, W. J. & Ferry, J. D. (1935) The calibration of graded collodion membranes. Brit. J. Exp. Path. 16, 1.Google Scholar
Elford, W. J. & Ferry, J. D. (1936) The ultrafiltration of proteins through graded collodion membranes. II. Biochem. J. 30, 84.Google Scholar
Elford, W. J. & Galloway, I. A. (1933 a). Filtration of the virus of Borna disease through graded collodion membranes. Brit. J. Exp. Path. 14, 196.Google Scholar
Elford, W. J. & Galloway, I. A. (1933 b). The size of the virus of louping-ill of sheep by the method of ultrafiltration analysis. J. Path. Bact. 37, 381.Google Scholar
Elford, W. J. & Galloway, I. A. (1937) Centrifugation studies. III. The viruses of foot-and-mouth disease and vesicular stomatitis. Brit. J. Exp. Path. 18, 155.Google Scholar
Elford, W. J., Galloway, I. A. & Perdrau, J. R. (1935) The size of the virus of poliomyelitis as determined by ultrafiltration analysis. J. Path. Bact. 40, 135.Google Scholar
Elford, W. J. & Perdrau, J. R. (1935) The size of St Louis encephalitis virus as determined by ultrafiltration analysis. J. Path. Bact. 40, 143.CrossRefGoogle Scholar
Elford, W. J., Perdrau, J. R. & Smith, W. (1933) The filtration of herpes virus through graded collodion membranes. J. Path. Bact. 36, 49.Google Scholar
Elford, W. J. & Todd, C. (1933) The size of the virus of fowl plague estimated by the method of ultrafiltration analysis. Brit. J. Exp. Path. 14, 240.Google Scholar
Eriksson-Quensel, I.-B. & Svedberg, T. (1936) Sedimentation and electrophoresis of the tobacco mosaic virus protein. J. Amer. Chem. Soc. 58, 1863.CrossRefGoogle Scholar
Exner, F. M. & Luria, S. E. (1941) X-ray inactivation of bacteriophage. Science, N.S. 94, 394.CrossRefGoogle Scholar
Findlay, G. M. & Broom, J. C. (1933) Experiments on the filtration of yellow fever virus through gradocol membranes. Brit. J. Exp. Path. 14, 391.Google Scholar
Frampton, V. L. (1939 a). On the molecular weight of tobacco mosaic virus protein. Science, 90, 305.CrossRefGoogle ScholarPubMed
Frampton, V. L. (1939 b). Viscosimetric studies on the tobacco mosaic virus protein. I. J. Biol. Chem. 129, 233.Google Scholar
Frampton, V. L. (1942) On the size and shape of the tobacco mosaic virus protein particle. Science, 95, 232.Google Scholar
Frampton, V. L. & Saum, A. M. (1939) An estimate of the maximum value for the molecular weight of the tobacco mosaic virus protein. Science, 89, 84.Google Scholar
Galloway, I. A. & Elford, W. J. (1933) The differentiation of the virus of vesicular stomatitis from the virus of foot-and-mouth disease by filtration. Brit. J. Exp. Path. 14, 400.Google Scholar
Galloway, I. A. & Elford, W. J. (1936 a). The size of the virus of rabies (‘fixed strain’) by ultrafiltration analysis. J. Hyg., Camb., 36, 532.Google Scholar
Galloway, I. A. & Elford, W. J. (1936 b). The size of the virus of Aujeszky's disease (Pseudorabies, ‘Mad itch’) by ultrafiltration analysis. J. Hyg., Camb., 36, 536.Google Scholar
Gard, S. & Pedersen, K. O. (1941) Purification of the virus of mouse encephalomyelitis (Theiler's disease). Science, 94, 493.CrossRefGoogle Scholar
Gibbs, C. S. (1935) Ultrafiltration experiments with the virus of laryngotracheitis and coryza of chickens. J. Bact. 30, 411.CrossRefGoogle ScholarPubMed
Grabar, P. (1938) Influence of collodion membrane structure on the ultrafiltration of proteins. Cold Spr. Harb. Symp. 6, 252.Google Scholar
Green, R. H., Anderson, T. F. & Smadel, J. E. (1942) Morphological structure of the virus of vaccinia. J. Exp. Med. 75, 561.Google Scholar
Hagemann, P. K. H. (1937) Fluoreszenzmikroskopische Untersuchungen über Virus und andere Mikroben. Z. Bakt. Abt. 1. Orig. 140, 184.Google Scholar
Hetler, D. M. & Bronfenbrenner, J. (19301931) Detachment of bacteriophage from its carrier particles. J. Gen. Physiol. 14, 547.Google Scholar
Hills, C. H. & Vinson, C. G. (1938) Particle size of tobacco mosaic virus. Res. Bull. Mo. Agric. Exp. Sta. 286, 18.Google Scholar
Holmes, F. O. (1941) A distinctive strain of tobacco mosaic virus from plantago. Phytopath. 31, 1089.Google Scholar
Kalmanson, G. & Bronfenbrenner, J. (19391940) Studies on the purification of bacteriophage. J. Gen. Physiol. 23, 203.Google Scholar
Kausche, G. A., Pfankuch, E. & Ruska, H. (1939) Die Sichtbarmachung von pflanzlichen Virus im Übermikroskop. Naturwissenschaften, 27, 292.Google Scholar
Knight, C. A. & Stanley, W. M. (1941) Preparation and properties of cucumber virus. 4. J. Biol. Chem. 141, 29.Google Scholar
Krassnoff, D. & Reinié, L. (1937) Dimensions probables du virus de la fièvre aphteuse. C.R. Soc. Biol, Paris, 124, 790.Google Scholar
Krause, F. (1938) Aufnahmen von Viren mit dem Elcktronenmikroskop. Naturwissenschaften, 26, 122.Google Scholar
Lamm, O. & Polson, A. (1936) The determination of diffusion constants of proteins by a refractometric method. Biochem. J. 30, 528.Google Scholar
Langmuir, I. & Schaefer, V. J. (1937) Optical measurement of the thickness of a film adsorbed from a solution. J. Amer. Chem. Soc. 59, 1406.Google Scholar
Lauffer, M. A. (1938) The viscosity of tobacco mosaic virus protein solutions. J. Biol. Chem. 126, 443.CrossRefGoogle Scholar
Lauffer, M. A. (1940) Ultracentrifugation studies on tobacco mosaic and bushy stunt viruses. J. Phys. Chem. 44, 1137.Google Scholar
Lauffer, M. A. (1942) The homogeneity of bushy stunt virus protein as determined by the ultra-centrifuge. J. Biol. Chem. 143, 99.Google Scholar
Lauffer, M. A. & Ross, A. F. (1940) Physical properties of alfalfa mosaic virus. J. Amer. Chem. Soc. 62, 3296.Google Scholar
Lauffer, M. A. & Stanley, W. M. (1938) Stream double refraction of virus proteins. J. Biol. Chem. 123, 507.Google Scholar
Lauffer, M. A. & Stanley, W. M. (1940) Studies on the sedimentation rate of bushy stunt virus. J. Biol. Chem. 135, 463.Google Scholar
Lazarus, A. S. & Meyer, K. F. (1939) The virus of psittacosis. II. J. Bact. 38, 153.Google Scholar
Lea, D. E. (1940) Determination of the sizes of viruses and genes by radiation methods. Nature, Lond., 146, 137.Google Scholar
Lea, D. E. & Smith, , Kenneth, M. (1942) The inactivation of plant viruses by radiations. II. The relation between inactivation dose and size of virus. Parasitology, 34, 227.Google Scholar
Levaditi, C., Bridré, J. & Krassnoff, D. (1938). Dimensions approximatives du virus de la clavellée déterminées par l'ultrafiltration. C.R. Acad. Sci., Paris, 206, 893.Google Scholar
Levaditi, C., Kling, C., Païc, M. & Haber, P. (1936) Taille approximative du virus poliomyélitique. C.R. Acad. Sci., Paris, 203, 899.Google Scholar
Levaditi, C., Païc, M., Haber, P. & Krassnoff, D. (1936) Ultrafiltration et dimensions approximatives du virus de la peste aviaire. C.R. Soc. Biol., Paris, 122, 1021.Google Scholar
Levaditi, C., Païc, M. & Krassnoff, D. (1936) Taille approximative des virus fixe et des rues. C.R. Soc. Biol., Paris, 123, 866.Google Scholar
Levaditi, C., Païc, M., Krassnoff, D. & Voet, J. (1936) Ultrafiltration et dimensions probables des virus de la fièvre aphteuse et de la stomatite vésiculeuse. C.R. Soc. Biol., Paris, 122, 619.Google Scholar
Levaditi, C., Païc, M., Voet, J. & Krassnoff, D. (1936) Ultrafiltrabilité et dimensions probables des bactériophages. C.R. Soc. Biol., Paris, 122, 354.Google Scholar
Loring, H. S. (1938) Properties of the latent mosaic virus protein. J. Biol. Chem. 126, 455.Google Scholar
Loring, H. S., Osborn, H. T. & Wyckoff, R. W. G. (1938) Ultracentrifugal isolation of high molecular weight proteins from broad bean and pea plants. Proc. Soc. Exp. Biol., N. Y., 38, 239.Google Scholar
Loring, H. S. & Wyckoff, R. W. G. (1937) The ultracentrifugal isolation of latent mosaic virus protein. J. Biol. Chem. 121, 225.Google Scholar
Luria, S. E. & Anderson, T. F. (1942) The identification and characterization of bacteriophages with the electron microscope. Proc. Nat. Acad. Sci., Wash., 28, 127.Google Scholar
Luria, S. E. & Exner, F. M. (1941) Inactivation of bacteriophages by X-rays: influence of the medium. Proc. Nat. Acad. Sci., Wash., 27, 370.Google Scholar
McBain, J. W. & Leyda, F. A. (1941) The calculation of particle size and molecular weight from current centrifugal methods. Acta Physicochimica U.R.S.S. 14, 1.Google Scholar
MacCallum, W. G. & Oppenheimer, E. H. (1922) Differential centrifugalisation: a method for the study of filterable viruses as applied to vaccinia. J. Amer. Med. Ass. 78, 410.Google Scholar
MacClement, D. & Smith, J. H. (1932) Filtration of plant viruses. Nature, Lond., 130,129.Google Scholar
McFarlane, A. S. (1938) New aspects of virus disease. Proc. Roy. Soc. B, 125, 301.Google Scholar
McFarlane, A. S. & Kekwick, R. A. (1938) Physical properties of bushy stunt virus protein. Biochem. J. 32, 1607.Google Scholar
McFarlane, A. S., MacFarlane, M. G., Amies, C. R. & Eagles, G. H. (1939) A physical and chemical examination of vaccinia virus. Brit. J. Exp. Path. 20, 485.Google Scholar
McIntosh, J. & Selbie, F. R. (1937) The measurement of the size of viruses by high-speed centrifugalisation. Brit. J. Exp. Path. 18, 162.Google Scholar
Mendelsohn, W., Clifton, C. E. & Lewis, M. R. (1931) Ultrafiltration studies on the active agent of the chicken tumour No. 1. Amer. J. Hyg. 14, 421.Google Scholar
Merling-Eisenberg, K. B. (1938) Microscopical observations on bacteriophage of Bact. coli. Brit. J. Exp. Path. 19,338.Google Scholar
Miyagawa, Y., Mitamura, T., Yaoi, H., Ishii, N., Nakajima, H., Okanishi, J., Watanabe, S. & Sato, K. (1935) Studies on the virus of Lymphogranuloma inguinale Nicolas, Favre & Durand. Jap. J. Exp. Med. 13, 1.Google Scholar
Miyagawa, Y., Mitamura, T., Yaoi, H., Ishii, N. & Okanishi, J. (1935) Studies on the virus of Lymphogranuloma inguinale Nicolas, Favre & Durand. Jap. J. Exp. Med. 13, 723.Google Scholar
Moriyama, H. (1939) The water content of the particle of vaccinia virus proteid. Arch. ges. Virusforsch. 1, 273.Google Scholar
Neurath, H. (1939) The apparent shape of protein molecules. J. Amer. Chem. Soc. 61, 1841.Google Scholar
Neurath, H. & Cooper, G. R. (1940) The diffusion constant of tomato bushy stunt virus. J. Biol. Chem. 135, 455.Google Scholar
Neurath, H., Cooper, G. R., Sharp, D. G., Taylor, A. R., Beard, D. & Beard, J. W. (1941) Molecular size, shape and homogeneity of the rabbit papilloma virus protein. J. Biol. Chem. 40, 293.Google Scholar
Neurath, H. & Saum, A. M. (1938) The diffusion of tobacco mosaic virus protein in aqueous solution. J. Biol. Chem. 126, 435.Google Scholar
Northrop, J. H. (19371938) Concentration and purification of bacteriophage. J. Gen. Physiol. 21, 335.Google Scholar
Northrop, J. H. & Anson, M. L. (19281929) A method for the determination of diffusion constants and the calculation of the radius and weight of the haemoglobin molecule. J. Gen. Physiol. 12, 543.Google Scholar
Perrin, F. (1934) Mouvement Brownien d'un ellipsoïde (I). Dispersion diélectrique pour les molécules ellipsoïdales. J. Phys. Radium, 5, 497.Google Scholar
Perrin, F. (1936) Mouvement Brownien d'un ellipsoïde (II). Rotation libre et dépolarisation des fluorescences. Translation et diffusion de molecules ellipsoïdales. J. Phys. Radium, 7, 1.Google Scholar
Perutz, M. F. (1942) X-ray analysis of haemoglobin. Nature, Land., 194, 491.Google Scholar
Pfankuch, E. & Kausohe, G. A. (1940) Isolierung und übermikroskopische Abbildung eines Bakteriophagen. Naturwissenschaften, 28, 46.Google Scholar
Pickels, E. G. & Bauer, J. H. (1940) Ultracentrifugation studies of yellow fever virus. J. Exp. Med. 71, 703.Google Scholar
Pickels, E. G. & Smadel, J. A. (1938) Ultracentrifugation studies on the elementary bodies of vaccine virus. J. Exp. Med. 68, 583.Google Scholar
Pirie, N. W., Smith, , Kenneth, M., Spooner, E. T. C. & MacClement, W. D. (1938) Purified preparations of tobacco necrosis virus. Parasitology, 30, 543.Google Scholar
Polson, A. (1941) A new capillary cell for measuring the rate of sedimentation of virus particles in a centrifugal field. Nature, Lond., 148, 593.Google Scholar
Price, W. C. & Wyckoff, R. W. G. (1938) The ultracentrifugation of the proteins of cucumber viruses 3 and 4. Nature, Land., 141, 685.Google Scholar
Price, W. C. & Wyckoff, R. W. G. (1939) Ultracentrifugation of juices from plants affected by tobacco necrosis. Phytopathology, 29, 83.Google Scholar
Rivers, T. M. (1932) The nature of viruses. Physiol. Rev. 12, 423.CrossRefGoogle Scholar
Robinson, J. R. (1939 a). Shape of tobacco mosaic virus particles in solution. Nature, Lond., 143, 923.Google Scholar
Robinson, J. R. (1939 b). Studies in the viscosity of colloids. I. The anomalous viscosity of dilute suspensions of rigid anisometric particles. Proc. Roy. Soc. A, 170, 519.Google Scholar
van Rooyen, C. E. (1937) Elementary (Paschen) bodies in myxomatosis of the rabbit. Z. Bakt. Orig. 139, 130.Google Scholar
Ross, A. F. (1941) Purification and properties of alfalfa mosaic virus protein. Phytopathology, 31, 395.Google Scholar
Ruska, H., Borries, B. V. & Ruska, E. (1939) Die Bedeutung der Übermicroskopie für die Virus-forschung. Arch. ges. Virusforsch. 1, 155.Google Scholar
Schlesinger, M. (1933 a). Die Bestimmung von Teilchengrösse und spezifischen Gewicht des Bakteriophagen durch Zentrifugierversuche. Z. Hyg. InfektKr. 114, 161.Google Scholar
Schlesinger, M. (1933 b). Reindarstellung eines Bakteriophagen in mit freien Auge sichtbaren Mengen. Biochem. Z. 264, 6.Google Scholar
Schlesinger, M. (1934) Die Verwendung einfacher Becherzentrifuge zur Bestimmung der Teilchengrösse in kolloiden Lösungen. Kolloidzschr. 67, 135.Google Scholar
Schlesinger, M. (1936) Centrifuging in rotating hollow cylinders. Nature, Lond., 138, 549.Google Scholar
Schlesinger, M. & Andrewes, C. H. (1937) The filtration and centrifugation of the viruses of rabbit fibróma and rabbit papilloma. J. Hyg., Camb., 37, 521.Google Scholar
Schlesinger, M. & Galloway, I. A. (1937) Sedimentation of the virus of foot-and-mouth disease in the Sharpies super-centrifuge. J. Hyg., Camb., 37, 445.Google Scholar
Schramm, G. (1939) Zur Grösse des Virus der infektiösen Myxomatosis. Naturwissenschaften, 27, 149.Google Scholar
Scott, T. F. M. & Elford, W. J. (1939) The size of the virus of lymphocytic choriomeningitis as determined by ultrafiltration and ultracentrifugation. Brit. J. Exp. Path. 20, 182.Google Scholar
Sharp, D. G., Taylor, A. R., Beard, D., Finklestein, H. & Beard, J. W. (1939) Macromolecular component of chick embryo tissue diseased with western strain equine encephalomyelitis virus. Proc. Soc. Exp. Biol., N.Y., 42, 790.CrossRefGoogle Scholar
Smadel, J. E., Pickels, E. G. & Shedlovsky, T. (1938) Ultracentrifugation studies on the elementary bodies of vaccine virus. II. J. Exp. Med. 68, 607.Google Scholar
Smadel, J. E., Pickels, E. G., Shedlovsky, T. & Rivers, T. M. (1940) Observations on mixtures of elementary bodies of vaccinia and coated collodion particles by means of ultracentrifugation and electrophoresis. J. Exp. Med. 72, 523.Google Scholar
Smith, J. H. (1940). The nature and characteristics of filtrable viruses. Rep. Proc. 3rd Int. Congr. Microbiol, p. 277, New York, 1939.Google Scholar
Smith, , Kenneth, M. (1935) A new virus disease of the tomato. Ann. Appl. Biol. 22, 731.Google Scholar
Smith, , Kenneth, M. & Doncaster, J. P. (1935) The preparation of gradocol membranes and their application in the study of plant viruses. Parasitology, 27, 523.Google Scholar
Smith, , Kenneth, M. & MacClement, D. (1938) New aspects of virus disease. Proc. Roy. Soc. B, 125, 295.Google Scholar
Smith, , Kenneth, M. & MacClement, W. D. (1940) Filtration studies on Nicotiana Virus 11. Parasitology, 32, 321.Google Scholar
Smith, , Kenneth, M. & MacClement, W. D. (1941) Further studies on the ultrafiltration of plant viruses. Parasitology, 33, 320.Google Scholar
Stanley, W. M. (1939) The isolation and properties of tobacco ringspot virus. J. Biol. Chem. 129, 405.Google Scholar
Stanley, W. M. (1940) Purification of tomato bushy stunt virus by differential centrifugation. J. Biol. Chem. 135, 437.Google Scholar
Stanley, W. M. & Anderson, T. F. (1941) A study of purified viruses with the electron microscope. J. Biol. Chem. 139, 325.Google Scholar
Stanley, W. M. & Wyckoff, R. W. G. (1937) The isolation of tobacco ringspot and other virus proteins by ultracentrifugation. Science, N.S. 85, 181.Google Scholar
Stern, K. G. & Duran-Reynals, F. (1939) Physico-chemical properties of the Rous chicken tumour agent. Science, N.S. 89, 609.Google Scholar
Svedberg, T. (1924) Density and hydration in gelatin SQlS and gels. J. Amer. Chem. Soc. 46, 2673.Google Scholar
Svedberg, T. (1926) Über die Bestimmung von Molekulargewichten durch Zentrifugierung. Z. phys. Chem. 121, 65.Google Scholar
Svedberg, T. (1928). Colloid Chemistry. Amer. Chem. Soc. Monogr. Ser. no. 16. New York: The Chemical Catalog Co. Inc.Google Scholar
Svedberg, T. (1930) The pH. stability regions of the proteins. Trans. Faraday Soc. 26, 741.Google Scholar
Svedberg, T. & Chirnoaga, E. (1928) The molecular weight of haemocyanin. J. Amer. Chem. Soc. 50,1399.Google Scholar
Svedberg, T. & Eriksson-Quensel, I.-B. (1936) Haemocyanin in heavy water. Nature, Lond., 137, 400.Google Scholar
Svedberg, T. & Nichols, J. B. (1927) The application of the oil turbine type of ultracentrifuge to the study of the stability region of carbon monoxide-haemoglobin. J. Amer. Chem. Soc. 49, 2920.Google Scholar
Svedberg, T. & Pedersen, K. O. (1940). The Ultracentrifuge. Clarendon Press, Oxford.Google Scholar
Svedberg, T. & Rinde, H. (1924) The ultra-centrifuge, a new instrument for the determination of size of particles in amicroscopic colloids. J. Amer. Chem. Soc. 46, 2677.Google Scholar
Svedberg, T. & Stamm, A. J. (1929) The molecular weight of edestin. J. Amer. Chem. Soc. 51, 2170.Google Scholar
Takahashi, W. N. & Rawlins, T. E. (1933) Rod-shaped particles in tobacco mosaic virus demonstrated by stream double refraction. Science, N.S. 77, 26.Google Scholar
Takahashi, W. N. & Rawlins, T. E. (1937) Stream double refraction of preparations of crystalline tobacco mosaic protein. Science, N.S. 85, 103.Google Scholar
Tang, F. F., Elford, W. J. & Galloway, I. A. (1937) Centrifugation studies. IV. The megatherium bacteriophage and the viruses of equine encephalomyelitis and louping-ill. Brit. J. Exp. Path. 18, 269.Google Scholar
Taniguchi, T., Kuga, S., Hosokawa, M. & Masuda, Z. (1935) A study on the-virus of summer encephalitis in Japan. Jap. J. Exp. Med. 13, 109.Google Scholar
Taniguchi, T., Hosokawa, M., Kuga, S. & Terada, K. (1935) An experimental study on the virus of measles. Jap. J. Exp. Med. 13, 577.Google Scholar
Taylor, A. R., Sharp, D. G., Beard, D. & Beard, J. W. (1941) Properties of the isolated macromolecular component of normal chick embryo tissue. Science, N.S. 94, 615.Google Scholar
Theiler, M. & Bauer, J. H. (1934) Ultrafiltration of the virus of poliomyelitis. J. Exp. Med. 60, 767.Google Scholar
Theiler, M. & Gard, S. (1940) Encephalomyelitis of mice. J. Exp. Med. 72, 49.Google Scholar
Thornberry, H. H. (1935) Particle diameter of certain plant viruses and Phytomonas pruni bacteriophage. Phytopathology, 25, 938.Google Scholar
Tiselius, A., Pedersen, K. O. & Svedberg, T. (1937) Analytical measurement of ultracentrifugal sedimentation. Nature, Lond., 140, 848.Google Scholar
Waugh, J. G. & Vinson, C. G. (1932) Particle size of the virus of tobacco mosaic in purified solutions. Phytopathology (Abstr.) 22, 29.Google Scholar
Wyckoff, R. W. G. (1937 a). Molecular sedimentation constants of tobacco mosaic virus proteins extracted from plants at intervals after inoculation. J. Biol. Chem. 121, 219.Google Scholar
Wyckoff, R. W. G. (1937 b). Ultracentrifugal concentration of a homogeneous heavy component from tissues diseased with equine encephalomyelitis. Proc. Soc. Exp. Biol., N.Y., 36, 771.Google Scholar
Wyckoff, R. W. G. (19371938 a). An ultracentrifugal analysis of concentrated Staphylococcus bacteriophage preparations. J. Gen. Physiol. 21, 367.Google Scholar
Wyckoff, R. W. G. (19371938 b). An ultracentrifugal study of the pH stability of tobacco mosaic virus protein. J. Biol. Chem. 122, 239.Google Scholar
Wyckoff, R. W. G. (1938) An ultracentrifugal analysis of the aucuba mosaic virus protein. J. Biol. Chem. 124, 585.Google Scholar
Wyckoff, R. W. G. (1939) The ultracentrifugal analysis of the latent mosaic virus protein. J. Biol. Chem. 128, 729.Google Scholar
Wyckoff, R. W. G., Biscoe, J. & Stanley, W. M. (1937) An ultracentrifugal analysis of the crystalline virus proteins isolated from plants diseased with different strains of tobacco mosaic virus. J. Biol. Chem. 117, 57.Google Scholar
Yaoi, H., Kanazawa, K., Murae, M. & Arakawa, S. (1939) On the size of Japanese epidemic encephalitis virus as estimated by ‘gradocol’ membranes. Jap. J. Exp. Med. 17, 375.Google Scholar
Yaoi, H., Kanazawa, K. & Sato, K. (1936) Ultrafiltration experiments on the virus of rabies (virus fixed). Jap. J. Exp. Med. 14, 73.Google Scholar
Yaoi, H. & Nakahara, W. (1935) Ultrafiltration experiments on the filterable agent of Rous chicken sarcoma. Jap. J. Exp. Med. 13, 757.Google Scholar
Yaoi, H. & Sato, K. (1935) On the size of typhoid and dysentery bacteriophages estimated by the gradocol membranes of Elford. Jap. J. Exp. Med. 13, 565.Google Scholar