Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-26T00:54:28.681Z Has data issue: false hasContentIssue false

Simulations of enhanced malaria transmission and host bias induced by modified vector blood location behaviour

Published online by Cambridge University Press:  06 April 2009

P. A. Rossignol
Affiliation:
Division of Geographic Medicine and Infectious Diseases, Tufts University School of Medicine, Boston, MA 02111
A. Mackay Rossignol
Affiliation:
Department of Civil Engineering, Environmental Health Program, Tufts University, Medford, MA 02155

Summary

Monte Carlo simulations were developed to assess the potential impact of parasite pathology on vector salivary function as well as of host haemostasis on transmission. Assuming that a proportion of desisting vectors switch host following failure to locate blood, we demonstrate three possible consequences: (1) infected vectors contact more hosts than non-infected hosts, (2) non-infected vectors are biased to infected hosts, independently of attraction, and (3) an exponential relationship exists between parasite load and transmission. We discuss possible epidemiological implications.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Boreham, P. F. L. & Garrett-Jones, C. (1973). Prevalence of mixed blood meals and double feeding in a malaria vector (Anopheles sacharovi Favre). Bulletin of the World Health Organization 46, 605–14.Google Scholar
Boyd, M. F. (1949). Epidemiology of malaria: Factors related to the definitive host. In Malariology, vol. 1 (ed. Boyd, M. F.) pp. 608697. Philadelphia: W. B. Saunders.Google Scholar
Boyd, M. F. & Stratman-Thomas, W. K. (1934). Studies on benign tertian malaria. 7. Some observations on inoculation and onset. American Journal of Hygiene 20, 488–95.Google Scholar
Cabaret, J. (1984). Les réinfestations des mollusques par les protostrongyles: Phénomènes de limitation et de facilitation. Annales de Parasitologie humaine et comparée 59, 369–78.CrossRefGoogle Scholar
Crofton, H. D. (1971). A quantitative approach to parasitism. Parasitology 62, 179–93.CrossRefGoogle Scholar
Daniel, T. L. & Kingsolver, J. G. (1983). Feeding strategy and the mechanics of blood feeding in insects. Journal of Theoretical Biology 105, 661–72.CrossRefGoogle ScholarPubMed
Day, J. F. & Edman, J. D. (1983). Malaria renders mice susceptible to mosquito feeding when gametocytes are most infective. Journal of Parasitology 69, 163–70.CrossRefGoogle ScholarPubMed
Jerwood, D., Lewis, T. & Saporu, F. W. O. (1984). Modelling the migration of Onchocerca volvulus in simuliids, using a single compartmental process. Biometrics 40, 313–22.CrossRefGoogle Scholar
Kareiva, P. & Odell, G. (1987). Swarms of predators exhibit ‘preytaxis’ if individual predators use area-restricted search. American Naturalist 130, 233–70.CrossRefGoogle Scholar
Kingsolver, J. G. (1987). Mosquito host choice and the epidemiology of malaria. American Naturalist 130, 811–37.CrossRefGoogle Scholar
Macdonald, G. (1957). The Epidemiology and Control of Malaria. London: Oxford University Press.Google Scholar
Mahon, R. & Gibbs, A. (1982). Arbovirus infected hens attract more mosquitoes, In Viral Diseases in Southeast Asia and Western Pacific (ed. MacKensie, J. S.) pp. 502505. Sydney: Academic Press.Google Scholar
Maier, W. A., Becker-Feldman, H. & Seitz, H. M. (1987). Pathology of malaria-infected mosquitoes. Parasitology Today 3, 216–18.CrossRefGoogle ScholarPubMed
Mellink, J. J. (1982). Estimation of the amount of Venezualan equine encephalomyelitis virus transmitted by a single infected Aedes aegypti (Diptera: Culicidae). Journal of Medical Entomology 19, 275–80.CrossRefGoogle Scholar
Minchella, D. J. (1985). Host life-history variation in response to parasitism. Parasitology 90, 205–16.CrossRefGoogle Scholar
Mitzmain, M. B. (1916). Anopheles infectivity experiments. An attempt to determine the number of persons one mosquito can infect with malaria. Reprint No. 359 Public Health Reports (from Boyd, 1949).Google Scholar
Molyneux, D. H. & Jefferies, D. (1986). Feeding behaviour of pathogen-infected vectors. Parasitology 92, 721–36.CrossRefGoogle ScholarPubMed
Mougey, Y. & Bain, O. (1976). Passage des microfilaires dans l'hémocèle du vecteur: modèles stochastiques appropriés à diverses hypothèses sur les mécanismes de la limitation. Annales de Parasitologie humaine et comparée 51, 95110.CrossRefGoogle Scholar
O'Connor, F. W. & Beatty, H. A. (1938). Wuchereria bancrofti in mosquitoes in St. Croix. Transactions of the Royal Society of Tropical Medicine and Hygiene 31, 413–30.CrossRefGoogle Scholar
Pichon, G., Perrault, G. & Laigret, J. (1974). Rendement parasitaire chez les vecteurs de filarioses. Bulletin of the World Health Organization 51, 517–24.Google Scholar
Prod'hon, J., Pichon, G. & Riviere, F. (1980). Etude quantitative de la réduction parasitaire stomacale chez les vecteurs de filarioses. Cahier ORSTROM, Série Entomologie médicale et Parasitologie 18, 1325.Google Scholar
Ribeiro, J. M. C., Rossignol, P. A. & Spielman, A. (1984). Role of mosquito saliva in blood vessel location. Journal of Experimental Biology 108, 19.CrossRefGoogle ScholarPubMed
Ribeiro, J. M. C., Rossignol, P. A. & Spielman, A. (1985 a). Aedes aegypti: Model for blood finding strategy and prediction of parasite manipulation. Experimental Parasitology 60, 118–32.CrossRefGoogle ScholarPubMed
Ribeiro, J. M. C., Rossignol, P. A. & Spielman, A. (1985 b). Salivary gland apyrase determines probing time in anopheline mosquitoes. Journal of Insect Physiology 31, 689–92.CrossRefGoogle Scholar
Rosenberg, R., Koontz, L. C. & Carter, R. (1982). Infection of Aedes aegypti with zygotes of Plasmodium gallinaceum fertilized in vitro. Journal of Parasitology 68, 653–6.CrossRefGoogle ScholarPubMed
Rossignol, P. A. (1988). Parasite modification of mosquito probing behaviour. Miscellaneous Publications of the Entomological Society of America 68, 25–8.Google Scholar
Rossignol, P. A., Ribeiro, J. M. C., Jungery, M., Turell, M. J., Spielman, A. & Bailey, C. L. (1985). Enhanced mosquito blood-finding success on parasitemic hosts: Evidence for vector-parasite mutualism. Proceedings of the National Academy of Science, USA 82, 7725–7.CrossRefGoogle ScholarPubMed
Rossignol, P. A., Ribeiro, J. M. C. & Spielman, A. (1984). Increased intradermal probing time in sporozoite-infected mosquitoes. American Journal of Tropical Medicine and Hygiene 33, 1720.CrossRefGoogle ScholarPubMed
Rossignol, P. A., Ribeiro, J. M. C. & Spielman, A. (1986). Increased biting rate and reduced fertility in sporozoite-infected mosquitoes. American Journal of Tropical Medicine and Hygiene 35, 277–9.CrossRefGoogle ScholarPubMed
Sterling, C. R., Aikawa, M. & Vanderberg, J. P. (1973). The passage of Plasmodium berghei sporozoites through the salivary glands of Anopheles stephensi: An electron microscope study. Journal of Parasitology 59, 593605.CrossRefGoogle ScholarPubMed
Van der meer, J. (1981). Elementary Mathematical Ecology. New York: John Wiley & Sons.Google Scholar
Walker, E. D. & Edman, J. D. (1985). The influence of host defensive behavior on mosquito (Diptera: Culicidae) biting persistence. Journal of Medical Entomology 22, 370–2.CrossRefGoogle ScholarPubMed
Washino, R. K. & Tempelis, C. H. (1983). Mosquito host blood-meal identification: Methodology and data analysis. Annual Review of Entomology 28, 179201.CrossRefGoogle Scholar
Wilson, J. J., Neame, P. B. & Kelton, J. G. (1982). Infection-induced thrombocytopenia. Seminars in Thrombosis and Hemostasis 8, 217–33.CrossRefGoogle ScholarPubMed