Hostname: page-component-78c5997874-ndw9j Total loading time: 0 Render date: 2024-11-05T13:43:16.989Z Has data issue: false hasContentIssue false

Similarities among ectoparasite fauna of sigmodontine rodents: phylogenetic and geographical influences

Published online by Cambridge University Press:  20 August 2012

LEONARDO DOMINICI CRUZ*
Affiliation:
Programa de Pós-graduação em Ciências Biológicas (Zoologia), Instituto de Biociências, Universidade Estadual Paulista Júlio de Mesquita Filho, Rio Claro, São Paulo, Brazil
FERNANDA RODRIGUES FERNANDES
Affiliation:
Programa de Pós-graduação em Ecologia, Instituo de Biologia, Universidade Estadual de Campinas, Campinas, São Paulo, Brazil
ARÍCIO XAVIER LINHARES
Affiliation:
Departamento de Biologia Animal, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, São Paulo, Brazil
*
*Corresponding author: Universidade Federal do Maranhão, Campus de São Bernardo, Rua Projetada, s/n, Perímetro Urbano, 65550000, São Bernardo, Maranhão, Brazil. Tel: +55 98 34771513. E-mail: [email protected]

Summary

Phylogenetic and geographical overlaps in host distributions influence the compositional similarity of ectoparasite fauna in a host–parasite system. In these systems, hosts that are more closely related (phylogenetically) are expected to share more parasitic species than more distantly related hosts. Similarly, hosts sharing a larger geographical distribution overlap are expected to have similar ectoparasites. This study investigated the influence of phylogeny (divergence time) and geographical overlap of some neotropical sigmodontine rodent species on the similarities among their ectoparasite fauna (Mesostigmata and Siphonaptera), using a partial Mantel test. Divergence time was the only significant factor that influenced the similarity among the ectoparasites, when mites and fleas were analysed together. Host species that had diverged more recently displayed ectoparasite fauna that were similar. The similarities of the flea species showed similar results in both separate and joint analyses, but neither phylogenetic nor geographical overlap influenced the similarity in mite species. Fleas were shown to be more host-specific than were mesostigmate mites, probably because of the increased influence of host phylogeny.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Agosta, S. J., Janz, N. and Brooks, D. R. (2010). How specialists can be generalists: resolving the “parasite paradox” and implications for emerging infectious disease. Zoologia 27, 151162.CrossRefGoogle Scholar
Agosta, S. J. and Klemens, J. A. (2008). Ecological fitting by phenotypically flexible genotypes: implications for species associations, community assembly and evolution. Ecology Letters 11, 11231134.CrossRefGoogle ScholarPubMed
Antonovics, J., Hood, M. and Partain, J. (2002). The ecology and genetics of a host shift: Mycrobotryum as a model system. American Naturalist 160, S40S53.CrossRefGoogle ScholarPubMed
Brooks, D. R. (1988). Macroevolutionary comparisons of host and parasite phylogenies. Annual Review of Ecology and Systematics 19, 235259.CrossRefGoogle Scholar
Brooks, D. R., León-Règagnon, V., Mclennan, D. A. and Zelmer, D. (2006). Ecological fitting as a determinant of the community structure of platyhelminth parasites of anurans. Ecology 87 (Suppl.) S76S85.CrossRefGoogle ScholarPubMed
Bush, A. O., Fernandéz, J. C., Esch, G. W. and Seed, J. R. (2001). Parasitism: The Diversity and Ecology of Animal Parasites. Cambridge University Press, Cambridge, UK.Google Scholar
Davies, T. J. and Pedersen, A. B. (2008). Phylogeny and geography predict pathogen community similarity in wild primates and humans. Proceedings of the Royal Society of London, B 275, 16951701.Google ScholarPubMed
D'Elía, G. (2003). Phylogenetics of Sigmodontinae (Rodentia, Muroidea, Cricetidae), with special reference to the akodont group, and with additional comments on historical biogeography. Cladistics 19, 307323.CrossRefGoogle Scholar
Drummond, A. J., Ho, S. Y. M., Phillips, M. J. and Rambaut, A. (2006). Relaxed phylogenetics and dating with confidence. PLoS Biology 4, e88.CrossRefGoogle ScholarPubMed
Drummond, A. J. and Rambaut, A. (2007). BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evolutionary Biology 7, 214.CrossRefGoogle ScholarPubMed
Hafner, M. S. and Page, R. D. M. (1995). Molecular phylogenies and host-parasite cospeciation: gophers and lice as a model system. Philosophical Transactions of the Royal Society, B 349, 7783.Google ScholarPubMed
Hall, T. (2007). BioEdit v7.0.9: a User-Friendly Biological Sequence Alignment Editor and Analysis Program for Windows 95/98/N/2 K/XP/7. Available from: <http://www.mbio.ncsu.edu/bioedit/bioedit.html>Google Scholar
Hoberg, E. P. and Brooks, D. R. (2008). A macroevolutionary mosaic: episodic host-switching, geographical colonization and diversification in complex host-parasite systems. Journal of Biogeography 35, 15331550.CrossRefGoogle Scholar
Janzen, D. H. (1985) On ecological fitting. Oikos 45, 308310.CrossRefGoogle Scholar
Kennedy, C. R. and Bush, A. O. (1994). The relationship between pattern and scale in parasite communities: a stranger in strange land. Parasitology 109, 187196.CrossRefGoogle ScholarPubMed
Kimura, M. (1981). Estimation of evolutionary distances between homologous nucleotide sequences. Proceedings of the National Academy of Sciences, USA 78, 454458.CrossRefGoogle ScholarPubMed
Krasnov, B. R., Mouillot, D., Shenbrot, G. I., Khokhlova, I. S., Vinarski, M. V., Korallo-Vinarskaya, N. P. and Poulin, R. (2010). Similarity in ectoparasite faunas of Paleartic rodents as a function of host phylogenetic, geographic or environmental distances: Which matters the most? International Journal for Parasitology 40, 807817.CrossRefGoogle ScholarPubMed
Krasnov, B. R., Mouillot, D., Khokhlova, I. S., Shenbrot, G. I. and Poulin, R. (2012). Compositional and phylogenetic dissimilarity of host communities drives dissimilarity of ectoparasite assemblages: geographical variation and scale-dependence. Parasitology 139, 338347.CrossRefGoogle ScholarPubMed
Krebs, C. J. (1999). Ecological Methodology, 2nd Edn. Benjamin Cummings, USA.Google Scholar
Koleff, P., Gaston, K. J. and Lennon, J. J. (2003). Measuring beta diversity for presence absence data. Journal of Animal Ecology 72, 367382.CrossRefGoogle Scholar
Lindquist, E. E., Krantz, G. W. and Walter, D. E. (2009). Order Mesostigmata. In A Manual of Acarology, 3rd Edn. (ed. Krantz, G. W. and Walter, D. E.), pp. 124232. Texas Tech University Press, Lubbock, USA.Google Scholar
Manly, B. F. J. (1991). Randomization and Monte Carlo Methods in Biology. Chapman and Hall, London, UK.CrossRefGoogle Scholar
Muñoz, G., Grutter, A. S. and Cribb, T. H. (2006). Endoparasite communities of five fish species (Labridae: Cheilininae) from Lizard Island: how important is the ecology and phylogeny of the hosts? Parasitology 132, 363374.CrossRefGoogle ScholarPubMed
Oksanen, J., Blanchet, F. G., Kindt, R., Legendre, P., O'Hara, R. B., Simpson, G. L., Solymos, P., Stevens, M. H. H. and Wagner, H. (2011). Vegan: Community Ecology Package. R package version 1.17–6. Available from: <http://CRAN.R-project.org/package=vegan>Google Scholar
Pardiñas, U. F. J., D'Elía, G. and Ortiz, P. E. (2002). Sigmodontinos fósiles (Rodentia, Muroidea, Sigmodontinae) de América del Sur: Estado actual de su conocimiento y prospectiva. Journal of Neotropical Mammalogy 9, 209252.Google Scholar
Paterson, A. M., Palma, R. L. and Gray, R. D. (1999). How frequently do avian lice miss the boat? Implications for coevolutionary studies. Systematic Biology 48, 214223.CrossRefGoogle Scholar
Patterson, B. D., Ceballos, G., Sechrest, W., Tognelli, M. F., Brooks, T., Luna, L., Ortega, P., Salazar, I. and Young, B. E. (2007). Digital Distribution Maps of the Mammals of the Western Hemisphere, version 3.0. NatureServe, Virginia, USA. Available from: <http://www.natureserve.org > .Google Scholar
Posada, D. (2008). jModelTest: Phylogenetic Model Averaging. Molecular Biology and Evolution 25, 12531256.CrossRefGoogle ScholarPubMed
Poulin, R. (2007). Evolutionary Ecology of Parasites, 2nd Edn. Princeton University Press, Princeton, NJ, USA.CrossRefGoogle Scholar
Poulin, R. (2010). Decay of similarity with host phylogenetic distance in parasite faunas. Parasitology 137, 733741.CrossRefGoogle ScholarPubMed
Poulin, R. and Mouillot, D. (2003). Parasite specialization from a phylogenetic perspective: a new index of host specificity. Parasitology 126, 473480.CrossRefGoogle ScholarPubMed
Rangel, T. F., Diniz-Filho, J. A. F. and Bini, L. M. (2010). SAM: a comprehensive application for Spatial Analysis in Macroecology. Ecography 33, 4650.CrossRefGoogle Scholar
R Development Core Team. (2010). R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. Available from: <http://www.r-project.org > .+.>Google Scholar
Reig, O. A. (1987). An assessment of the systematics and evolution of the Akodontini, with the description of new fossil species of Akodon (Cricetidae: Sigmodontinae). Fieldiana Zoology 39, 347399.Google Scholar
Rosenberg, M. S. and Anderson, C. D. (2011). PASSaGE: Pattern Analysis, Spatial Statistics and Geographic Exegesis. Version 2. Methods in Ecology and Evolution 2, 229232.CrossRefGoogle Scholar
Smith, M. F. and Patton, J. L. (1999). Phylogenetic relationships and the radiation of sigmodontine rodents in South America: evidence from cytochrome b. Journal of Mammalian Evolution 6, 89128.CrossRefGoogle Scholar
Smith, V. S., Light, J. E. and Durden, L. A. (2008). Rodent louse diversity, phylogeny, and cospeciation in the Manu Biosphere Reserve, Peru. Biological Journal of the Linnean Society 95, 598610.CrossRefGoogle Scholar
Smouse, P. E., Long, J. C. and Sokal, R. R. (1986). Multiple regression and correlation extensions of the Mantel test of matrix correspondence. Systematic Zoology 35, 627632.CrossRefGoogle Scholar
Spradling, T. A., Hafner, M. S. and Demastes, J. W. (2001). Differences in rate of cytochrome-b evolution among species of rodents. Journal of Mammalogy 82, 6580.2.0.CO;2>CrossRefGoogle Scholar
Steppan, S. J., Adkins, R. M. and Anderson, J. (2004). Phylogeny and divergence-date estimates of rapid radiations in muroid rodents based on multiple nuclear genes. Systematic Biology 53, 533553.CrossRefGoogle ScholarPubMed
Weksler, M. (2003). Phylogeny of Neotropical oryzomyine rodents (Muridae: Sigmodontinae) based on the nuclear IRBP exon. Molecular Phylogenetics and Evolution 29, 331349.CrossRefGoogle ScholarPubMed
Supplementary material: File

Cruz Supplementary Material

Appendix

Download Cruz Supplementary Material(File)
File 133.6 KB