Published online by Cambridge University Press: 27 July 2017
High levels of molecular diversity were identified in mitochondrial cytochrome c oxidase (cox1) gene sequences of Schistosoma turkestanicum from Hungary. These cox1 sequences were all specific to Hungary which contrasted with the low levels of diversity seen in the nuclear internal transcribed spacer region (ITS) sequences, the majority of which were shared between China and Iran isolates. Measures of within and between host molecular variation within S. turkestanicum showed there to be substantial differences in molecular diversity, with cox1 being significantly more diverse than the ITS. Measures of haplotype frequencies revealed that each host contained its own subpopulation of genetically unique parasites with significant levels of differentiation. Pairwise mismatch analysis of cox1 sequences indicated S. turkestanicum populations to have a bimodal pairwise difference distribution and to be stable unlike the ITS sequences, which appeared to have undergone a recent population expansion event. Positive selection was also detected in the cox1 sequences, and biochemical modelling of the resulting protein illustrated significant mutational events causing an alteration to the isoelectric point of the cox1 protein, potentially altering metabolism. The evolutionary signature from the cox1 indicates local adaptation and long establishment of S. turkestanicum in Hungary with continual introgression of nuclear genes from Asian isolates. These processes have led to the occurrence of mito-nuclear discordance in a schistosome population