Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-27T16:55:41.795Z Has data issue: false hasContentIssue false

Sialic acid analysis and tritium-labelling of sialoglycoproteins of mouse erythrocytes infected with Plasmodium berghei

Published online by Cambridge University Press:  06 April 2009

R. J. Howard
Affiliation:
Malaria Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
D. C. Seeley Jr
Affiliation:
Malaria Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
Vivien Kao
Affiliation:
Malaria Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
Margreat Wember
Affiliation:
Biochemisches Institut, Christian-Albrecht's Universität, Kiel D-2300, West Germany
R. Schauer
Affiliation:
Biochemisches Institut, Christian-Albrecht's Universität, Kiel D-2300, West Germany

Summary

Schizont-infected red blood cells (SI-RBC) from Plasmodium berghei-infected mice contain between 2 and 10 times as much sialic acid as uninfected RBC from the same blood (99–550 μg/1010 RBC versus 33–65 μg/1010 RBC). Total RBC samples from infected animals containing up to 63% ring- and trophozoite-infected cells had identical sialic acid contents to purified RBC samples (of < 3% parasitaemia) from the same blood (52–64 μg/1010 RBC). We conclude that RBC containing immature parasites have the same sialic acid content as uninfected RBC from infected blood and that total cellular sialic acid increases during maturation to the schizont stage. Uninfected RBC from infected blood had 25–50% as much sialic acid as normal mouse RBC (33–65 μg/1010 RBC versus 126 μg/1010 RBC). There were no qualitative changes in RBC sialic acids, all RBC samples having 60–70% N-acetyl neuraminic acid, 30–40% N-acetyl-9-O-acetylneuraminic acid and 5–10% N-gly colylneuraminic acid. The quantitative changes we observed during infection must reflect changes in murine sialoglycoconjugates, as we have shown elsewhere that Plasmodia do not synthesize or contain sialic acids. Since the sialic acid composition of mouse serum glycoconjugates is quite different to that of the RBC fractions studied here, the quantitative data suggest that part of the sialic acids of the uninfected RBC has been transferred to SI-RBC. With higher molar ratios of periodate to substrate than generally used, we were able to radio-isotopically label normal murine sialoglycoproteins on SI-RBC and purified uninfected RBC from infected blood by the periodate/NaB3H4 method. Several new proteins were then tritiated with SI-RBC but these proteins may be intracellular and could even lack sialie acid.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1986

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Brown, K. N., Brown, I. N. & Hills, C. A. (1980). Immunity to malaria. I. Protection against Plasmodium knowlesi shown by monkeys sensitized with drug-suppresses infections or by dead parasites in Freund's adjuvant. Experimental Parasitology 28, 304–17.CrossRefGoogle Scholar
Casals-Stenzel, J., Buscher, H-P. & Schauer, R. (1975). Gas–liquid chromatography of N- and O-acylated neuraminic acids. Analytical Biochemistry 65, 507–24.CrossRefGoogle Scholar
Dodge, J. T., Mitchell, C. & Hanahan, D. J. (1963). The preparation and chemical characteristics of hemoglobulin-free ghosts of human erythrocytes. Archives of Biochemistry and Biophysics 100, 119–30.CrossRefGoogle ScholarPubMed
Fabia, F., Gattegno, L., Rousset, J-J. & Cornillot, P. (1979). Plasmodium chabaudi: Modification des acides sialiques de surface des hematies au cours de l'infestation. Annals de Parasitologie humaine et comparée 54, 110.CrossRefGoogle Scholar
Fearon, D. T. (1978). Regulation by membrane sialic acid of β1H-dependent decay-dissociation of amplification C3 convertase of the alternative complement pathway. Proceedings of the National Academy of Sciences, USA 75, 1971–5.CrossRefGoogle ScholarPubMed
Gahmberg, C. G. (1976). External labelling of human erythrocyte glycoproteins. Journal of Biological Chemistry 251, 510–15.CrossRefGoogle ScholarPubMed
Gahmberg, C. G. & Andersson, L. C. (1977). Selective radioactive labelling of cell surface sialoglycoproteins by periodate-tritiated borohydride. Journal of Biological Chemistry 252, 5888–94.CrossRefGoogle ScholarPubMed
Gahamberg, C. G., Virtanen, I. & Wartiovaana, J. (1978). Cross-linking of erythrocyte membrane proteins by periodate and intramembrane particle distribution. The Biochemical Journal 171, 683–6.CrossRefGoogle Scholar
Grant, P. T. & Fulton, J. D. (1957). The catabolism of glucose by strains of Trypanosoma rhodesiense. The Biochemical Journal 66, 242–50.CrossRefGoogle ScholarPubMed
Greenwalt, T. J. & Steane, E. A. (1973 a). Quantitative haemagglutination. IV. Effect of neuram inidase treatment on agglutination by blood group antibodies. British Journal of Haematology 25, 207–15.CrossRefGoogle Scholar
Greenwalt, T. J. & Steane, E. A. (1973 b). Quantitative haemagglutination. V. Influence of in vivo aging and neuraminidase treatment on the M and N antigens of human red cells. British Journal of Haematology 25, 217–26.CrossRefGoogle Scholar
Haverkamp, J., Schauer, R., Wember, M., Kamerling, J. P., & Vliegenthart, J. F. G. (1975) Synthesis of 9-O-acetyl-and 4,9-di-O-acetyl derivatives of the methyl ester of N-acetyl-β-D-neuraminic acid methylglycoside. Their use as models in periodate oxidation studies. Hoppe-Seyler's Zeitschrift für Physiologische Chemie 356, 1575–83.CrossRefGoogle ScholarPubMed
Howard, R. J. (1982). Alterations in the surface membrane of red blood cells during malaria. Immunological Reviews 61, 67107.CrossRefGoogle ScholarPubMed
Howard, R. J., Barnwell, J. W. & Kao, V. (1983). Antigenic variation in Plasmodium knowlesi malaria: identification of the variant antigen on infected erythrocytes. Proceedings of the National Academy of Sciences, USA 80, 4129–33.CrossRefGoogle ScholarPubMed
Howard, R. J. & Day, K. P. (1981). Plasmodium berghei: modification of sialic acid on red cells from infected mouse blood. Experimental Parasitology 51, 95103.CrossRefGoogle ScholarPubMed
Howard, R. J., Reuter, G., Barnwell, J. W. & Schauer, R. (1986). Sialoglycoproteins and sialic acids of Plasmodium knowlesi schizont-infected erythrocytes and normal rhesus monkey erythrocytes. Parasitology 92, 527–43.CrossRefGoogle ScholarPubMed
Howard, R. J., Smith, P. M. & Mitchell, G. F. (1978). Removal of leucocytes from red cells in Plasmodium berghei-infected mouse blood and purification of schizont-infected cells. Annals of Tropical and Medicine Parasitology 72, 573–6.CrossRefGoogle ScholarPubMed
Howard, R. J., Smith, P. M. & Mitchell, G. F. (1980 a). Characterization of surface proteins and glycoproteins of red blood cells from mice infected with haemosporidia. II. Plasmodium berghei infections of BALB/c mice. Parasitology 81, 273–98.CrossRefGoogle Scholar
Howard, R. J., Smith, P. M. & Mitchell, G. F. (1980 b). Characterization of surface proteins and glycoproteins of red blood cells from mice infected with haemosporidia. III. Plasmodium yoelii infections of BALB/c mice. Parasitology 81, 299314.CrossRefGoogle Scholar
Howard, R. J., Smith, P. M. & Mitchell, G. F. (1980 c). Characterization of surface proteins and glycoproteins of red blood cells from mice infected with haemosporidia. I. Babesia rodhaini infections of BALB/c mice. Parasitology 81, 251–71.CrossRefGoogle ScholarPubMed
Howard, R. J., Smith, P. M. & Mitchell, G. F. (1982). Surface membrane proteins and glycoproteins of red blood cells from normal and anaemic mice. Comparative Biochemistry and Physiology 71B, 713–21.Google ScholarPubMed
Kamerling, J. P., Vliegenthart, J. F. G., Versluis, C. & Schauer, R. (1975). Identification of O-acetylated N-acylneuraminic acids by mass spectrometry. Carbohydrate Research 41, 717.CrossRefGoogle ScholarPubMed
Kilejian, A., Abati, A. & Tracer, W. (1977). Plasmodium falciparum and Plasmodium coatneyi: immunogenicity of ‘knob-like protrusions’ on infected erythrocyte membranes. Experimental Parasitology 42, 75164.CrossRefGoogle ScholarPubMed
Küster, J. M. & Schauer, R. (1981). Phagocytosis of sialidase-treated rat erythrocytes: evidence for a two-step mechanism. Hoppe Seyler's Zeitschrift für Physiologische Chemie 362, 1507–14.CrossRefGoogle ScholarPubMed
Liao, T.-H., Gallop, P. M. & Blumenfeld, O. O. (1973). Modification of the sialyl residues of sialoglycoproteins of the human erythrocyte surface. Journal of Biological Chemistry 248, 8247–53.CrossRefGoogle ScholarPubMed
Marchesi, V. T., Furthmayr, H. & Tomita, M. (1976). The red cell membrane. Annual Reviews of Biochemistry 45, 667–98.CrossRefGoogle ScholarPubMed
Miller, L. H. & Carter, R. (1976). Innate resistance in malaria. Experimental Parasitology 40, 132–46.CrossRefGoogle ScholarPubMed
Newbold, C. I., Boyle, D. B., Smith, C. C. & Brown, K. N. (1982). Identification of a schizont- and species-specific surface glycoprotein on erythrocytes infected with rodent malarias. Molecular and Biochemical Parasitology 5, 4554.CrossRefGoogle ScholarPubMed
Poels, L. G., Van Niekerk, C. C. & Franken, M. A. M. (1978). Plasmodial antigens exposed on the surface of infected reticulocytes: Their role in induction of protective immunity in mice. Israel Journal of Medical Science 14, 575–81.Google ScholarPubMed
Reuter, G., Vliegenthart, J. F. G., Wember, M., Schauer, R. & Howard, R. J. (1980). Identification of 9-O-acetyl-N-acetylneuraminic acid on the surface of BALB/c mouse erythrocytes. Biochemical and Biophysical Research Communications 94, 567–72.CrossRefGoogle ScholarPubMed
Rock, R. C. (1971). Incorporation of 14C-labelled non-lipid precursors into lipids of Plasmodium knowlesi in vitro. Comparative Biochemistry and Physiology 40B, 657–69.Google Scholar
Roth, R. L. & Herman, R. (1979). Plasmodium berghei: Correlation of in vitro erythrophagocytosis with the dynamics of early-onset anemia and reticulocytosis in mice. Experimental Parasitology 47, 169–79.CrossRefGoogle ScholarPubMed
Sarris, A. H. & Palade, G. E. (1979). The sialogly coproteins of murine erythrocyte ghosts. A modified periodic acid-Schiff stain procedure staining nonsubstituted and O-acetylated sialyl residues on glycopeptides. Journal of Biological Chemistry 254, 6724–31.CrossRefGoogle Scholar
Schauer, R. (1978). Characterization of sialic acids. Methods in Enzymology 50, 6489.CrossRefGoogle ScholarPubMed
Schauer, R. (1982). Chemistry, metabolism and biological functions of sialic acids. Advances in Carbohydrate Chemistry and Biochemistry 40, 131234.CrossRefGoogle ScholarPubMed
Schauer, R., Buscher, H.-P. & Casals-Stenzel, J. (1974). Sialic acids: their analysis and enzymic modification in relation to the synthesis of submandibular gland glycoproteins. Biochemical Society Symposia 40, 87116.Google Scholar
Schauer, R., Wember, M. & Howard, R. J. (1984). Malaria parasites do not contain or synthesize sialic acids. Hoppe Seyler's Zeitschrift für Physiologische Chemie 365, 185–94.CrossRefGoogle ScholarPubMed
Seaman, G. V. F., Knox, R. J., Nordt, F. J. & Regan, D. H. (1977). Red cell aging. I. Surface charge density and sialic acid content of density-fractionated human erythrocytes. Blood 50, 1001–11.CrossRefGoogle ScholarPubMed
Sherman, I. W. (1979). Biochemistry of Plasmodium (malarial parasites). Microbiological Reviews 43, 453–95.CrossRefGoogle ScholarPubMed
Sherman, I. W. & Jones, L. A. (1979). Plasmodium lophurae: membrane proteins of erythrocyte-free plasmodia and malaria-infected red cells. Journal of Protozoology 26, 489501.CrossRefGoogle ScholarPubMed
Steck, T. L. & Dawson, G. (1974). Topographical distribution of complex carbohydrates in the erythrocyte membrane. Journal of Biological Chemistry 249, 2135–42.CrossRefGoogle ScholarPubMed