Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-13T08:22:13.680Z Has data issue: false hasContentIssue false

The sensory physiology of the human louse Pediculus humanus corporis de Geer (Anoplura)

Published online by Cambridge University Press:  06 April 2009

V. B. Wigglesworth
Affiliation:
London School of Hygiene and Tropical Medicine

Extract

(i) Sensory responses

The reactions of the body louse to temperature, humidity, smell, contact and light have been tested in an arena divided into two halves.

Temperature. A temperature of 29–30° C. is preferred before 32° C. or 27° C. As the alternative temperature rises above 32° C. or falls below 27° C. the avoidance becomes increasingly strong. Different individuals vary in sensitivity.

These results are in accordance with those observed in a linear gradient of temperature, in which the lice collect chiefly in the region from 28 to 31° C.

The response is always to air temperature; there is no response to radiant heat from objects at 20–45° C.

Humidity. The louse is generally indifferent to humidity over the range from 10 to 60 or 75% r.h. Higher humidities are avoided. But when offered two humidities the choice is greatly influenced by the conditions experienced by the louse in the immediate past; it avoids any change; hence different individuals may show quite different responses. Moreover, when offered the choice of very moist air (95 % r.h. or over) and very dry (47 % r.h. or under) the louse becomes more readily adapted to the moist air and begins to avoid the dry.

Smell. The louse prefers cloth that has been in contact with human skin to clean cloth or cloth smelling of dog or rabbit. The smell of other lice and of their excreta is also attractive. Many substances serve as repellents; a refined petroleum with a very faint odour has been chiefly used for the experiments.

Contact. When offered smooth and rough materials the louse chooses the latter. It moves more rapidly on smooth materials and does not come to rest so readily. It shows little response to air currents unless very strong, when they are avoided.

Light. The movements of the louse are arrested or retarded by sudden exposure to a bright light, and sometimes it may show avoiding movements. But the movement of the louse towards dark places is mainly a response to directed light received by the horizontally placed eyes. Slight differences in the light received from different directions exert a much greater effect if the louse is exposed to a low level of general light intensity.

The movement of the louse towards relatively small dark objects is probably a manifestation of the same response.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1941

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Alessandrini, G. (1919). I pidocchi nella profilassi del tifo esantematico. Ann. Igiene (sper.), 29, 557–98.Google Scholar
Bacot, A. (1917). A contribution to the bionomics of Pediculus humanus (vestimenti) and Pediculus capitis . Parasitology, 9, 228–58.CrossRefGoogle Scholar
Blumenthal, H. (1935). Untersuchungen fiber das “Tarsalorgan’ der Spinnen. Z. Morph. Ökol. Tiere, 29, 667719.CrossRefGoogle Scholar
Buxton, P. A. (1931). The measurement and control of atmospheric humidity in relation to entomological problems. Bull. ent. Res. 22, 431–47.CrossRefGoogle Scholar
Buxton, P. A. (1939). The Louse. London: Arnold and Co. Google Scholar
Buxton, P. A. & Mellanby, K. (1934). The measurement and control of humidity. Bull. ent. Res. 25, 171–5.CrossRefGoogle Scholar
Crowden, G. P. (1934). Metallic insulation. Proc. Instn. Heat. Vent. Engrs, Lond., 2, 422–57.Google Scholar
Fraenkel, G. (1931). Die Mechanik der Orientierung der Tiere im Raum. Biol. Rev. 6, 3687.CrossRefGoogle Scholar
Fraenkel, G. & Gunn, D. L. (1940). The Orientation of Animals: Kineses, Taxes and Compass Reactions. Oxford: Clarendon Press.Google Scholar
Frickhinger, H. W. (1916). Über das Geruchsvermögen der Kleiderlaus (Pediculus corporis). Z. angew. Ent. 3, 263–81.CrossRefGoogle Scholar
Gunn, D. L. (1937). The humidity reactions of the woodlouse, Porcellio scaber (Latrielle). J. exp. Biol. 14, 178–86.CrossRefGoogle Scholar
Gunk, D. L. & Cosway, C. A. (1938). The temperature and humidity relations of the cockroach. V. Humidity preference. J. exp. Biol. 15, 555–63.Google Scholar
Gunn, D. L., Kennedy, J. S. & Pielou, D. P. (1937). Classification of taxes and kinesis. Nature, Lond., 140, 1064.CrossRefGoogle Scholar
Gunn, D. L. & Pielou, D. P. (1940). The humidity behaviour of the mealworm beetle, Tenebrio molitor L. III. The mechanism of the reaction. J. exp. Biol. 17, 307–16.CrossRefGoogle Scholar
Hase, A. (1915). Beiträge zu einer Biologie der Kleiderlaus (Pediculus corporis de Geer = vestimenti Nitzsch.). Z. angew. Entom., 2, 265359.CrossRefGoogle Scholar
Hase, A. (1931). Siphunculata. Biol. Tiere Dtschl. Lief. 34, Teil 30, 158.Google Scholar
Hindle, E. & Merriman, G. (1913). The sensory perceptions of Argas persicus . Parasitology, 5, 203–16.CrossRefGoogle Scholar
Homp, R. (1938). Wärmeorientierung von Pediculus vestimenti . Z. vergl. Physiol. 26, 134.CrossRefGoogle Scholar
Keilin, D. & Nuttall, G. H. F. (1930). Iconographic studies of Pediculus humanus . Parasitology, 22, 110.CrossRefGoogle Scholar
Kennedy, J. S. (1937). The humidity reactions of the African migratory locust, Locusta migratoria migratorioides R. & F., gregarious phase. J. exp. Biol. 14, 187–97.CrossRefGoogle Scholar
Kühn, A. (1919). Die Orientierung der Tiere im Raum. Jena: G. Fischer.Google Scholar
Lloyd, Ll. (1919). Lice and their Menace to Man. London.CrossRefGoogle Scholar
Marsh, F. & Buxton, P. A. (1937). Measurements of temperature and humidity between the clothes and the body. J. Hyg., Camb., 37, 254–60.CrossRefGoogle ScholarPubMed
Martini, E. (1918). Zur Kenntnis des Verhaltens der Läuse gegenüber Wärme. Z. angew. Entom. 4, 3470.CrossRefGoogle Scholar
Mellanby, K. (1932). The conditions of temperature and humidity of the air between the skin and shirt of man. J. Hyg., Camb., 32, 268–73.CrossRefGoogle ScholarPubMed
Müller, J. (1915). Zur Naturgeschichte der Kleiderlaus. Ost. Sanitatsw. 27, no. 36/38 and no. 47/49, Beilage. 75 pp.Google Scholar
Nuttall, G. H. F. (1917). The biology of Pediculus humanus . Parasitology, 10, 80185.CrossRefGoogle Scholar
Nuttall, G. H. F. (1919). The biology of Pediculus humanus . Supplementary notes. Parasitology, 11, 201–20.CrossRefGoogle Scholar
Pick, W. (1926). Über den Geruchsinn der Läuse. Derm. Wschr. 83, 1020–5.Google Scholar
Pielou, D. P. (1940). The humidity behaviour of the mealworm beetle, Tenebrio molitor L. II. The humidity receptors. J. exp. Biol. 17, 295306.CrossRefGoogle Scholar
Pielou, D. P. & Gunn, D. L. (1940). The humidity behaviour of the mealworm beetle. Tenebrio molitor L. I. The reaction to differences in humidity. J. exp. Biol. 17, 286–94.CrossRefGoogle Scholar
Pringle, J. W. S. (1938). Proprioception in insects. II. The action of the campaniform sensilla on the legs. J. exp. Biol. 15, 114–31.CrossRefGoogle Scholar
Sioli, H. (1937). Thermotaxis und Perzeption von Wärmestrahlen bei der Bettwanze (Cimex lectularius). Zool. Jb., Abt. Physiol. 58, 284–96.Google Scholar
Thomson, R. C. M. (1938). The reactions of mosquitoes to temperature and humidity. Bull. ent. Res. 29, 125–40.CrossRefGoogle Scholar
Ullyott, P. (1936). The behaviour of Dendrocodum lacteum. I. Responses at light-and-dark boundaries. J. exp. Biol. 13, 253–64.CrossRefGoogle Scholar
Weber, H. (1929). Biologische Untersuchungen an der Schweinelaus (Haematopinus suis L.) unter besonderer Berücksichtigung der Sinnesphysiologie. Z. vergl. Physiol. 9, 564612.CrossRefGoogle Scholar
Wioglesworth, V. B. (1930). A theory of tracheal respiration in insects. Proc. roy. Soc. B, 106, 229–50.Google Scholar
Wioglesworth, V. B. (1935). The regulation of respiration in the flea, Xenopsylla cheopis Roths. (Pulicidae). Proc. roy. Soc. B, 118, 397419.Google Scholar
Wioglesworth, V. B. (1939). The Principles of Insect Physiology. London: Methuen.Google Scholar
Wioglesworth, V. B. & Giiaett, J. D. (1934 a). The function of the antennae in Rhodnius prolixus (Hemiptera) and the mechanism of orientation to the host. J. exp. Biol. 11, 120–39.CrossRefGoogle Scholar
Wioglesworth, V. B. (1934 b). The function of the antennae in Rhodnius prolixus: confirmatory experiments. J. exp. Biol. 11, 408.CrossRefGoogle Scholar