Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-27T17:19:09.409Z Has data issue: false hasContentIssue false

Sense organs of monogenean skin parasites ending in a typical cilium

Published online by Cambridge University Press:  06 April 2009

Kathleen M. Lyons
Affiliation:
The Molteno Institute, Cambridge*

Extract

Single receptors seen with the electron microscope to consist of a terminal cilium embedded in a nerve bulb have been found in the skin parasitic monogenean Gyrodactylus sp., adult and larval Entobdella soleae, Leptocotyle minor (adult) and in the endoparasitic juvenile of Amphibdella flaviolineata. Their distribution in Gyrodactylus sp. has been mapped using phase-contrast microscopy, and staining with the indoxyl acetate method for non-specific esterases revealed a nervous connexion between the lateral ventral nerve cord and the ‘tangoreceptor’. The general relationships of the nervous system in Gyrodactylus were investigated by staining with the thiocholine method for cholinesterase. The ‘sensory’ neurone contains vesicles, microtubules and mitochondria and the whole nerve bulb is sealed into the epidermis by means of septate desmosomes. The basal body of the cilium is not greatly modified and there is no obvious rootlet system. The terminal cilium of single receptors in Entobdella soleae has a 9 + 2 structure. A compound sense organ from the head of Entobdella soleae has also been described. The significance of the fibre arrangement in the terminal cilia and the possible roles of these sense organs have been discussed.

I should like to thank Dr D. L. Lee for training in electron microscope techniques and for his encouragement, Dr P. Tate for his continued interest and the staff of the Marine Biological Laboratory, Plymouth, especially Mr G. Best and Mr J. E. Green, for their assistance. This work was conducted during tenure of a Science Research Council Fellowship and the Tucker-Price Research Fellowship of Girton College.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1969

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Baer, J. & Euzet, L. (1961). In Traité de Zoologie. (ed. Grassé, P.), vol. 4. Paris: Masson et Cie.Google Scholar
Belton, C. M. & Harris, P. J. (1967). Fine structure of the cuticle of the cercaria of Acanthatrium oregonese (Macy). J. Parasit. 53, 715–24.CrossRefGoogle Scholar
Burton, P. R. (1966). Substructure in certain cytoplasmic microtubules: an electron microscope study. Science, N.Y. 154, 903–5.CrossRefGoogle Scholar
Dixon, K. E. & Mercer, E. H. (1965). The fine structure of the nervous system of the cercaria of the liver fluke, Fasciola hepatica L. J. Parasit. 51, 967–76.CrossRefGoogle ScholarPubMed
Eakin, R. M. & Westfall, J. A. (1962). Fine structure of photoreceptors in the hydromedusan, Polyorchis pencillatus. Proc. natn. Acad. Sci. U.S.A. 48, 826–33.CrossRefGoogle Scholar
Erasmus, D. A. (1967). The host–parasite interface of Cyathocotyle bushiensis Khan, 1962 (Trematoda: Strigeoidea) II. Electron microscope studies of the tegument. J. Parasit. 53, 703–14.CrossRefGoogle ScholarPubMed
Fischthal, J. H. & Allison, L. N. (1940). Acolpenteron uretoecetes n.g., n.sp., a monogenetic trematode from the ureters of black basses. J. Parasit. 26, 34–5.Google Scholar
Gibbons, I. R. & Grimstone, A. V. (1960). On flagellar structure in certain flagellates. J. biophys. biochem. Cytol. 7, 697715.CrossRefGoogle ScholarPubMed
Gibbons, I. R. & Rowe, A. J. (1965). Dynein: a protein with adenosine triphosphatase activity from cilia. Science, N.Y. 149, 424–5.CrossRefGoogle ScholarPubMed
Halton, D. W. & Jennings, J. B. (1964). Demonstration of the nervous system in the monogenetic trematode Diplozoon paradoxum Nordmann by the indoxyl acetate method for esterases. Nature, Lond. 202, 510511.CrossRefGoogle ScholarPubMed
Horridge, G. A. (1965). Non motile sensory cilia and neuromuscular junctions in a ctenophore independent effector organ. Proc. R. Soc. B 162, 333–50.Google Scholar
Horridge, G. A. & Boulton, P. S. (1967). Prey detection by Chaetognatha via a vibration sense. Proc. R. Soc. B 168, 413–19.Google Scholar
Lee, D. L. (1966). The structure and composition of the helminth cuticle. Adv. Parasit. 4, 187254.CrossRefGoogle ScholarPubMed
Lewis, P. R. & Shute, C. C. D. (1966). The distribution of cholinesterase in cholinergic neurones demonstrated with the electron microscope. J. Cell. Sci. 1, 381–90.CrossRefGoogle ScholarPubMed
Lowenstein, O., Osborne, M. P. & Wersäll, J. (1964). Structure and innervation of the sensory epithelia of the labyrinth in the Thornback ray (Raja clavata). Proc. R. Soc. B 160, 112.Google ScholarPubMed
Lyons, K. M. (1969). Compound sensilla in monogenean skin parasites. Parasitology, 59, 625–36.CrossRefGoogle Scholar
Macrae, E. K. (1967). The fine structure of sensory receptor processes in the auricular epithelium of the planarian Dugesia tigrina. Z. Zellforsch. mikrosk. Anat. 82, 479–94.CrossRefGoogle ScholarPubMed
Morris, G. P. & Threadgold, L. T. (1967). A presumed sensory structure associated with the tegument of Schistosoma mansoni. J. Parasit. 53, 537–9.CrossRefGoogle ScholarPubMed
Morseth, D. J. (1967). Observations on the fine structure of the nervous system of Echinococcus granulosus. J. Parasit. 53, 492500.CrossRefGoogle ScholarPubMed
Okano, M., Weber, A. F. & Frommes, S. P. (1967). Electron microscope studies on the distal border of the canine olfactory epithelium. J. Ultrastruct. Res. 17, 487500.CrossRefGoogle ScholarPubMed
Pearse, A. G. E. (1961). Histochemistry, Theoretical and Applied, 2nd ed. London: J. and A. Churchill Ltd.Google Scholar
Poinar, G. O. Jr & Leutenegger, R. (1968). Anatomy of the infective and normal third stage juveniles of Neoaplectana carpocapsae Weiser (Steinernematidae: Nematoda). J. Parasit. 54, 340–50.CrossRefGoogle ScholarPubMed
Porter, K. R. & Bonneville, M. A. (1964). An introduction to the Fine Structure of Cells and Tissues, 2nd edn. London: Henry Kimpton.Google Scholar
Reese, T. S. (1965). Olfactory cilia in the frog. J. Cell Biol. 25, 209–30.CrossRefGoogle ScholarPubMed
Reynolds, E. S. (1963). The use of lead citrate at high pH as an electron-opaque stain in electron microscopy. J. Cell Biol. 17, 208–12.CrossRefGoogle ScholarPubMed
Richardson, K. C., Jarrett, L. & Finke, E. K. (1960). Embedding in epoxy resins for ultra-thin sectioning in electron microscopy. Stain Technol. 35, 313–23.CrossRefGoogle Scholar
Roggen, D. R., Raski, D. J. & Jones, N. O. (1966). Cilia in nematode sensory organs. Science, N.Y. 152, 515–16.CrossRefGoogle ScholarPubMed
Rohde, K. (1968). Lichtmikroskopische untersuchungen an den Sinnesrezeptoren der Trematoden. Z. Parasitkde. 30, 252–77.Google Scholar
Rosenbluth, J. (1965). Ultrastructural organization of obliquely striated muscle fibres in Ascaris lumbricoides. J. Cell Biol. 25, 495515.CrossRefGoogle ScholarPubMed
Skaer, R. J. (1961). Some aspects of the cytology of Polycelis nigra. Q. Jl microsc. Sci. 102, 295317.Google Scholar
Slifer, E. H. (1961). The fine structure of insect sense organs. Int. Rev. Cytol. 11, 125–59.CrossRefGoogle ScholarPubMed
Slifer, E. H., Sekhon, S. S. & Lees, A. D. (1964). The sense organs on the antennal flagellum of aphids (Homoptera), with special reference to the plate organs. Q. Jl microsc. Sci. 105, 21–9.Google Scholar
Thurm, U. (1964). Mechanoreceptors in the cuticle of the honey bee: fine structure and stimulus mechanism. Science, N.Y. 145, 1063–5.CrossRefGoogle ScholarPubMed
Warr, J. R., McVittie, A., Randall, J. & Hopkins, J. M. (1966). Genetic control of flagellar structure in Chlamydomonas reinhardii. Genet. Res. 7, 335–51.CrossRefGoogle Scholar
Whitear, M. (1962). The fine structure of Crustacean proprioceptors. I. The chordotonal organs in the legs of the shore crab, Carcinus maenas. Phil. Trans. R. Soc. B 245, 291324.Google Scholar
Wright, R. R. & MacCallum, A. B. (1887). Sphyranura osleri, a contribution to American helminthology. J. Morph. 1, 148.CrossRefGoogle Scholar