Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-28T12:16:33.392Z Has data issue: false hasContentIssue false

Selective metabolism of L-serine by Moniliformis (Acanthocephala) in vitro

Published online by Cambridge University Press:  06 April 2009

D. W. T. Crompton
Affiliation:
The Molteno Institute, University of Cambridge, Downing Street, Cambridge CB2 3EE
P. F. V. Ward
Affiliation:
Biochemistry Department, A.R.C. Institute of Animal Physiology, Babraham, Cambridge CB2 4AT

Summary

In a series of in vitro experiments, adult male and female Moniliformis dubius were incubated at pH 6·88 and 37 °C for 3 h in a 2·5 mM solution of 18 amino acids. Fifteen of these were absorbed slightly from the medium, but L-serine was almost completely absorbed while the concentrations of glycine and alanine in the medium increased during the course of the incubation. By using L-[U-14C]serine, it was found that labelled ethanol and CO2 were the main end-products of metabolism excreted into the medium, with smaller amounts of labelled alanine, lactate and acetate. Small amounts of cystathionine with high specific radioactivity were found in extracts of the worms at the end of incubation, together with other radioactive metabolites including glucose, ethanol, lactate, succinate, malate, serine, glycine and alanine. Ammonia was found to be an excretory product of the amino acid metabolism of M. dubius. Possible metabolic pathways and suggestions for the significance of serine metabolism in this parasite are discussed.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1984

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Arme, C. (1976). Feeding. In Ecological Aspects of Parasitology (ed. Kennedy, C. R.), pp. 7597. Amsterdam: North-Holland Publishing Company.Google Scholar
Barrett, J. (1981). Biochemistry of Parasitic Helminths. London and Basingstoke: Macmillan Publishers Ltd.Google Scholar
Crompton, D. W. T. (1973). The sites occupied by some parasitic helminths in the alimentary tract of vertebrates. Biological Reviews of the Cambridge Philosophical Society 48, 2783.CrossRefGoogle ScholarPubMed
Crompton, D. W. T. & Walters, D. E. (1972). An analysis of the course of infection of Moniliformis dubius in rats. Parasitology 64, 517–23.CrossRefGoogle ScholarPubMed
Hughes, D. E. (1951). A press for disrupting bacteria and other microorganisms. British Journal of Experimental Pathology 32, 97109.Google Scholar
Körting, W. & Fairbairn, D. (1972). Anaerobic energy metabolism in Moniliformis dubius (Acanthocephala). Journal of Parasitology 58, 4550.CrossRefGoogle ScholarPubMed
Krause, R., James, J. H., Humphrey, C. & Fischer, J. E. (1979). Plasma and brain amino acids in Walker 256 carcinosarcoma-bearing rats. Cancer Research 39, 3065–9.Google ScholarPubMed
Lackie, J. M. (1972). The course of infection and growth of Moniliformis dubius (Acanthocephala) in the intermediate host Periplaneta americana. Parasitology 64, 95106.CrossRefGoogle ScholarPubMed
McCoy, T. A., Maxwell, M. & Neuman, R. E. (1956). The amino acid requirements of the Walker carcinosarcoma 256 in vitro. Cancer Research 16, 979–84.Google Scholar
Mills, S. E., Armentano, L. E., Russell, R. W. & Young, J. W. (1981). Rapid and specific isolation of radioactive glucose from biological samples. Journal of Dairy Science 64, 1719–23.Google Scholar
Nesheim, M. C., Crompton, D. W. T., Arnold, S. & Barnard, D. (1977). Dietary relations between Moniliformis (Acanthocephala) and laboratory rats. Proceedings of the Royal Society of London, B 197, 363–83.Google ScholarPubMed
Pappas, P. W. & Read, C. P. (1975). Membrane transport in helminth parasites: a review. Experimental Parasitology 37, 469530.CrossRefGoogle ScholarPubMed
Podesta, R. B. (1980). Concepts of membrane biology in Hymenolepis diminuta. In Biology of the Tapeworm Hymenolepis diminuta (ed. Arai, H. P.), pp. 505–49. New York and London: Academic Press.CrossRefGoogle Scholar
Read, C. P., Rothman, A. H. & Simmons, J. E. (1963). Studies on membrane transport with special reference to host–parasite integration. Annals of the New York Academy of Sciences 113, 154205.Google Scholar
Rothman, A. H. & Fisher, F. M. (1964). Permeation of amino acids in Moniliformis and Macracanthorhynchus (Acanthocephala). Journal of Parasitology 50, 410–14.CrossRefGoogle ScholarPubMed
Singh, G., Pampori, N. A. & Srivastava, V. M. L. (1983). Metabolism of amino acids in Ascaridia galli: decarboxylation reactions. International Journal for Parasitology 13, 305–7.Google Scholar
Tanaka, R. D. &MacInnis, A. J. (1980). Analyses of the pseudocoelomic fluid from Moniliformis dubius. Journal of Parasitology 66, 354–5.CrossRefGoogle ScholarPubMed
Ward, P. F. V. (1974). The metabolism of glucose by Haemonchus contortus in vitro. Parasitology 69, 175–90.CrossRefGoogle Scholar
Ward, P. F. V., Coadwell, W. J. & Huskisson, N. S. (1981). The glucose metabolism of adult Ostertagia circumcincta in vitro. Parasitology 82, 1722.CrossRefGoogle ScholarPubMed
Ward, P. F. V. & Crompton, D. W. T. (1969). The alcoholic fermentation of glucose by Moniliformis dubius (Acanthocephala), in vitro. Proceedings of the Royal Society of London, B 172, 6588.Google ScholarPubMed
Ward, P. F. V. & Huskisson, N. S. (1972). The metabolism of fluoroacetate in lettuce. The Biochemical Journal 130, 575–87.CrossRefGoogle Scholar
Ward, P. F. V. & Huskisson, N. S. (1978). The energy metabolism of adult Haemonchus contortus in vitro. Parasitology 77, 255–71.CrossRefGoogle ScholarPubMed
Ward, P. F. V. & Huskisson, N. S. (1980). The role of carbon dioxide in the metabolism of adult Haemonchus contortus in vitro. Parasitology 80, 7382.Google Scholar
Whitfield, P. J. (1973). The egg envelopes of Polymorphus minutus (Acanthocephala). Parasitology 66, 387403.Google Scholar