Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-27T17:14:14.825Z Has data issue: false hasContentIssue false

Selection alters the pattern of emergence from the host cadaver in the entomopathogenic nematode, Steinernema glaseri

Published online by Cambridge University Press:  06 April 2009

R. J. Stuart*
Affiliation:
Department of Entomology, Rutgers University, New Brunswick, NJ 08903–0231, USA
E. E. Lewis
Affiliation:
Department of Entomology, Rutgers University, New Brunswick, NJ 08903–0231, USA
R. Gaugler
Affiliation:
Department of Entomology, Rutgers University, New Brunswick, NJ 08903–0231, USA
*
*Corresponding author. Current address: Blueberry and Cranberry Research Center, Rutgers University, Chats-worth, NJ 08019, USA. Tel: 609 726 1590. Fax: 609 726 1593. E-mail: [email protected].

Summary

We used selection to test for a genetic component to the pattern of emergence of infective juveniles from the host cadaver in the entomopathogenic nematode, Steinernema glaseri (Steiner), and whether other traits would respond to selection on this major and complex life-history character. We selected for early (‘ fast’) and late (‘ slow’) emerging lines by perpetuating nematodes that emerged on the first and after the seventh day of emergence respectively. After 12 cycles of selection, the pattern for the slow line but not the fast line differed significantly from the base population. Cumulative emergence for the slow line was less than the base population from Days 4 to 14 of the 18-day emergence period. The maximum difference occurred on the fourth day when 72·6% of emergence was complete for the base population but only 55·4% for the slow line. Decreases in infective juvenile size over the emergence period were consistent with the change in emergence pattern, but variation in sex ratios was not. No differences in infectivity were found. These results indicate that the emergence pattern has a genetic component, and that genetic variability for this trait occurs in natural populations. Furthermore, the asymmetric response to selection suggests that our field population is under strong selection for a highly skewed early emergence.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Akhurst, R. J. & Boemare, N. E. (1990). Biology and taxonomy of Xenorhabdus. In Entomopathogenic Nematodes in Biological Control, (ed. Gaugler, R. & Kaya, H. K.) pp. 7590. CRC Press, Boca Raton, FL.Google Scholar
Akhurst, R. J. & Brooks, W. M. (1984). The distribution of entomophilic nematodes (Heterorhabditidae and Steinernematidae) in North Carolina. Journal of Invertebrate Pathology 44, 140145.CrossRefGoogle Scholar
Bedding, R. A. & Akhurst, R. J. (1975). A simple technique for the detection of insect parasitic rhabditid nematodes in soil. Nematologia 21, 109–10.CrossRefGoogle Scholar
Curran, J. (1993). Post-application biology of entomopathogenic nematodes in soil. In Nematodes and the Biological Control of Insect Pests, (ed. Bedding, R., Akhurst, R. & Kaya, H.) pp. 6777. East Melbourne, CSIRO Publications, Australia.Google Scholar
Falconer, D. s. (1989). Introduction to Quantitative Genetics. 3rd Edn.Longman Scientific and Technical, New York.Google Scholar
Gaugler, R. (1993). Ecological genetics of entomopathogenic nematodes. In Nematodes and the Biological Control of Insect Pests, (ed. Bedding, R., Akhurst, R. & Kaya, H.) pp. 8995. CSIRO Publications, East Melbourne, Australia.Google Scholar
Gaugler, R., Campbell, J. F. & Mcguire, T. R. (1989). Selection for host-finding in Steinernema feltiae. Journal of Invertebrate Pathology 54, 363372.CrossRefGoogle Scholar
Gaugler, R., Wang, Y. & Campbell, J. F. (1994). Aggressive and evasive behaviors in Popillia japonica (Coleoptera: Scarabaeidae) larvae: defences against entomopathogenic nematode attack. Journal of Invertebrate Pathology 64, 193199.CrossRefGoogle Scholar
Hara, A. H., Gaugler, R., Kaya, H. K. & Lebeck, L. M. (1991). Natural populations of entomopathogenic nematodes (Rhabditida: Heterorhabditidae, Steinernematidae) from the Hawaiian Islands. Environmental Entomology 20, 211216.CrossRefGoogle Scholar
Hominick, W. M. & Reid, A. P. (1990). Perspectives on entomopathogenic nematology. In Entomopathogenic Nematodes in Biological Control, (ed. Gaugler, R. & Kaya, H. K.) pp. 327345. CRC Press, Boca Raton, FL.Google Scholar
Kaya, H. K. & Gaugler, R. (1993). Entomopathogenic nematodes. Annual Review of Entomology 38, 181206.CrossRefGoogle Scholar
Kaya, H. K., Bedding, R. A. & Akhurst, R. J. (1993). An overview of insect-parasitic and entomopathogenic nematodes. In: Nematodes and the Biological Control of Insect Pests, (ed. Bedding, R., Akhurst, R. & Kaya, H.) pp. 110. CSIRO Publications, East Melbourne, Australia.Google Scholar
Lewis, E. E. & Gaugler, R. (1994). Entomopathogenic nematode (Rhabdita: Steinernematidae) sex ratio relates to foraging strategy. Journal of Invertebrate Pathology 64, 238242.Google Scholar
Lewis, E. E., Gaugler, R. & Harrison, R. (1993). Response of cruiser and ambusher entomopathogenic nematodes (Steinernematidae) to host volatile cues. Canadian Journal of Zoology 71, 765769.CrossRefGoogle Scholar
Mauleon, H., Braind, S., Laumond, C. & Bonifassi, E. (1993). Use of digestive enzymes in analysis of Steinernema and Heterorhabditis parasites of insect larvae. Fundamental and Applied Nematology 16, 185186.Google Scholar
Maynard, Smith J. (1989). Evolutionary Genetics. Oxford University Press, New York.Google Scholar
Nguyen, K. B. & Smart, G. C. Jr. (1995) Morphometrics of infective juveniles of Steinernema spp. and Heterorhabditis bacteriophora (Nemata: Rhabditida). Journal of Nematology 27, 206212.Google Scholar
Poinar, G. O. (1990). Biology and taxonomy of Steinernematidae and Heterorhabditidae. In Entomopathogenic Nematodes in Biological Control, (ed. Gaugler, R. & Kaya, H. K.) pp. 2361. CRC Press, Boca Raton, FL.Google Scholar
Selvan, S., Campbell, J. F. & Gaugler, R. (1993). Density-dependent effects on entomopathogenic nematodes (Heterorhabditidae and Steinernematidae) within an insect host. Journal of Invertebrate Pathology 62, 278284.Google Scholar
Selvan, S., Gaugler, R. & Grewal, P. S. (1993). Water content and fatty acid composition of infective juvenile entomopathogenic nematodes during storage. Journal of Parasitology 79, 510516.Google Scholar
Selvan, S., Gaugler, R. & Lewis, E. E. (1993). Biochemical energy reserves of entomopathogenic nematodes. Journal of Parasitology 79, 167172.Google Scholar
Stuart, R. J. & Gaugler, R. (1994). Patchiness in populations of entomopathogenic nematodes. Journal of Invertebrate Pathology 64, 3945.Google Scholar
Stuart, R. J. & Gaugler, R. (1996). Genetic adaptation and founder effect in laboratory populations of the entomopathogenic nematode, Steinernema glaseri. Canadian Journal of Zoology 74, 164170.Google Scholar
Wang, Y., Gaugler, R. & cui, L. (1994). Variation in immune response of Popillia japonica and Acheta domesticus to Heterorhabditis bacteriophora and Steinernema species. Journal of Nematology 26, 1118.Google Scholar