Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-30T23:44:13.989Z Has data issue: false hasContentIssue false

The role of melanization in the immune reaction of larvae of Drosophila algonquin against Pseudeucoila bochei

Published online by Cambridge University Press:  06 April 2009

A. J. Nappi
Affiliation:
Biological Sciences, State University College, Oswego, New York 13126

Extract

The immune reaction of larvae of D. algonquin against P. bochei was characterized either by the melanization and encapsulation of the parasites or by the production of melanized particles. In successful host reactions the eggs of the parasite were killed before they were completely melanized and encapsulated by haemocytes. When host larvae were transferred during the early stages of infection to a diet that contained phenylthiourea (PTU), the incidence of melanization and encapsulation of the parasites was significantly reduced. However, if the hosts were transferred to the diet just before the eggs of the parasite were normally melanized, PTU had virtually no inhibitory effect, and the immune reaction rate remained very high. These results suggest that the biochemical reactions associated with melanization constitute an important part of the immune reaction of D. algonquin. The data provide additional evidence to support the idea advanced by other workers that the phenoloxidase system plays an important role in insect immunity against some internal metazoan parasites. It is suggested that, during infection, the phenoloxidase system of the haemocytes is activated by hormonal imbalance.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1973

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adam, H., (1965). Die haemocytaren Abwehrreaktion des Blutes von Strongylogaster xanthoceros (Stephens) und Strongylogaster lineata (Christ) gegen die endoparasitische Ichneumonidae Mesoleius niger (Gravenhorst). Beitraege zur Entomologie 15, 893965.Google Scholar
Brewer, F. D., & Vinson, S. B., (1971). Chemicals affecting the encapsulation of foreign material in an insect. Journal of Invertebrate Pathology 18, 287–9.Google Scholar
Bronskill, J. F., (1962). Encapsulation of rhabditoid nematodes in mosquitoes. Canadian Journal of Zoology 40, 1269–75.Google Scholar
Dennell, R., (1947). A study of an insect cuticle: The formation of the puparium of Sarcophaga falculata Pand. (Diptera). Proceedings of the Royal Society of London B 134, 79110.Google ScholarPubMed
Eckstein, F., (1931). Über Immunitat bei Insekten. Anzeiger für Schadlingskunde 7, 4955.CrossRefGoogle Scholar
Ermin, R., (1939). Über Bau und Funktion der Lymphocyten bei Insekten (Periplaneta americana L.). Zeitschrift für Zellforschung und mikroskopische Anatomie 28, 613–69.Google Scholar
Esslinger, J. H., (1962). Behaviour of microfilariae of Brugia pahangi in Anopheles quadrimaculatus. American Journal of Tropical Medicine and Hygiene 11, 749–58.Google Scholar
Heimpel, A. M., & Harshbarger, J. C., (1965). Symposium on microbial insecticides. V. Immunity in insects. Bacteriological Reviews 29, 397405.Google Scholar
Jenni, W., (1951). Beitrag zur Morphologie und Biologie der Cynipidae Pseudeucoila bochei Weld, eines Larvenparasiten von Drosophila melanogaster Meig. Acta Zoologica (Stockholm) 32, 177254.Google Scholar
Jones, J. C., (1956). The hemocytes of Sarcophaga bullata Parker. Journal of Morphology 99, 233–57.Google Scholar
Kitano, H., (1969 a). Experimental studies on the parasitism of Apanteles glomeratus L. with special reference to its encapsulation-inhibiting capacity. Bulletin Tokyo Gakugei University 21, 95136.Google Scholar
Kitano, H., (1969 b). Defensive ability of Apanteles glomeratus L. (Hymenoptera:Braconidae) to the hemocytic reaction of Pieris rapae crucivora Boisduval (Lepidoptera:Pieridae). Applied Entomology and Zoology 4, 51–5.Google Scholar
Lerner, A. B., & Fitzpatrick, T. B., (1950). Biochemistry of melanin formation. Physiological Reviews 30, 91126.CrossRefGoogle ScholarPubMed
Monné, L., (1960). On the physiological role of the polyphenols in cell and tissue envelopes. Arkiv för Zoologi 13, 287–99.Google Scholar
Nappi, A. J., (1970). Defense reactions of Drosophila euronotus larvae against the hymenopterous parasite Pseudeucoila bochei. Journal of Invertebrate Pathology 16, 40818.Google Scholar
Nappi, A. J., & Stoffolano, J. G. Jr. (1971). Heterotylenchus autumnalis: Hemocytic reactions and capsule formation in the host, Musca domestica. Experimental Parasitology 29, 116–25.CrossRefGoogle Scholar
Nappi, A. J., & Stoffolano, J. G. Jr,. (1972). Haemocytic changes associated with the immune reaction of nematode-infected larvae of Orthellia caesarion. Parasitology. (In the Press.)Google Scholar
Nappi, A. J., & Streams, F. A., (1969). Haemocytic reactions of Drosophila melanogaster to the parasites Pseudeucoila mellipes and P. bochei. Journal of Insect Physiology 15, 1551–66.Google Scholar
Nappi, A. J. & Streams, F. A. (1970). Abortive development of the cynipid parasite Pseudeucoila bochei (Hymenoptera) in species of the Drosophila melanica group. Annals of the Entomological Society of America 63, 321–7.CrossRefGoogle Scholar
Poinar, G. O. Jr., (1969). Arthropod immunity to worms. In Immunity to Parasitic Animals, vol. 1 (ed. Jackson, G., Herman, R. and Singer, I.), pp. 173210. New York: Appleton-Century-Crofts.Google Scholar
Poinar, G. O. Jr., & Leutenegger, R., (1971). Ultrastructural investigations of the melanization process in Culex pipiens in response to a nematode. Journal of infrastructure Research 36, 149–58.Google Scholar
Preston, J. W., & Taylor, R. L., (1970). Observations on the phenoloxidase system in the haemolymph of the cockroach Leucophaea maderae. Journal of Insect Physiology 16, 1729–44.Google Scholar
Rizki, T. M., & Rizki, R. M., (1959). Functional significance of the crystal cells in the larva of Drosophila melanogaster. Journal of Biophysical and Biochemical Cytology 5, 235–40.Google Scholar
Salt, G., (1956). Experimental studies in insect parasitism. IX. The reactions of a stick insect to an alien parasite. Proceedings of the Royal Society of London B 146, 93108.Google Scholar
Salt, G., (1963). The defense reactions of insects to metazoan parasites. Parasitology 53, 527642.Google Scholar
Salt, G., (1970). The Cellular Defence Reactions of Insects. Cambridge University Press.Google Scholar
Schlegel-Oprecht, E., (1953). Versuche zur Auflösung von Mutationen bei der zoophagen Cynipidae Pseudeucoila bochei Weld und Befunde über die stammspezinfische Abwehrreaktion des Wirtes Drosophila melanogaster. Zeitschrift für Abstammungas- und Verebungslehre 85, 245–81.Google Scholar
Schneider, F., (1950). Die Abwehrreaktion des Insektenblutes und ihre Beeinflussung durch die Parasiten. Vierteljahrsschrift Naturforschende Gesellschaft Zürich 95, 2244.Google Scholar
Streams, F. A., (1968). Defense reactions of Drosophila species (Diptera; Drosophilidae) to the parasite Pseudeucoila bochei (Hymenoptera; Cynipidae). Annals of the Entomological Society of America 61, 158–64.Google Scholar
Streams, F. A., & Greenberg, L. (1969). Inhibition of the defense reaction of Drosophila melanogaster parasitized simultaneously by the wasps Pseudeucoila bochei and Pseudeucoila mellipes. Journal of Invertebrate Pathology 13, 371–7.Google Scholar
Taylor, R. L., (1969). A suggested role for the polyphenol-phenoloxidase system in invertebrate immunity. Journal of Invertebrate Pathology 14, 427–8.Google Scholar
Walker, I., (1959). Die Abwehrreaktion des Wirtes Drosophila melanogaster gegen die zoophage Cynipidae Pseudeucoila bochei Weld. Revue Suisse Zoologie 69, 569632.Google Scholar
Weld, L. H., (1944). Descriptions of new Cynipidae including two new genera (Hymenoptera). Proceedings of the Entomological Society of Washington 46, 5666.Google Scholar