Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-11T10:00:02.588Z Has data issue: false hasContentIssue false

Risk of human infection with Giardia duodenalis from cats in Japan and genotyping of the isolates to assess the route of infection in cats

Published online by Cambridge University Press:  02 November 2010

J. SUZUKI*
Affiliation:
Division of Clinical Microbiology, Department of Microbiology, Tokyo Metropolitan Institute of Public Health, 3-24-1, Hyakunin-cho, Shinjuku-ku, Tokyo 169-0073, Japan
R. MURATA
Affiliation:
Division of Clinical Microbiology, Department of Microbiology, Tokyo Metropolitan Institute of Public Health, 3-24-1, Hyakunin-cho, Shinjuku-ku, Tokyo 169-0073, Japan
S. KOBAYASHI
Affiliation:
Department of Tropical Medicine and Parasitology, School of Medicine, Keio University, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
K. SADAMASU
Affiliation:
Division of Clinical Microbiology, Department of Microbiology, Tokyo Metropolitan Institute of Public Health, 3-24-1, Hyakunin-cho, Shinjuku-ku, Tokyo 169-0073, Japan
A. KAI
Affiliation:
Division of Clinical Microbiology, Department of Microbiology, Tokyo Metropolitan Institute of Public Health, 3-24-1, Hyakunin-cho, Shinjuku-ku, Tokyo 169-0073, Japan
T. TAKEUCHI
Affiliation:
Department of Tropical Medicine and Parasitology, School of Medicine, Keio University, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
*
*Corresponding author: Division of Clinical Microbiology, Department of Microbiology, Tokyo Metropolitan Institute of Public Health, 3-24-1, Hyakunin-cho, Shinjuku-ku, Tokyo 169-0073, Japan. Tel: +81-3-3363-3231; Fax: +81-3-3368-4060; E-mail: [email protected]

Summary

The number of facilities in which customers make contact with cats before eating and drinking, called ‘cat cafés’, has recently increased in Tokyo, Japan. In a survey to clarify the possibility of zoonotic transmission in Giardia duodenalis, the infection rates of G. duodenalis in 321 stool samples of cats from 16 cat cafés, 31 pet shops, and the Animal Care and Consultation Center of Tokyo were 19·1% (22/115), 1·2% (1/85), and 2·5% (3/121), respectively. In the molecular analysis of 26 G. duodenalis isolates, 6 samples from 2 cat cafés belonged to the zoonotic genotype assemblage A I, and 20 other samples were of assemblage F. Moreover, phylogenetic analysis of glutamate dehydrogenase (GDH) and triosephosphate isomerase (TPI) genes of the 20 assemblage F isolates revealed 2 major lineages. The 6 assemblage A isolates belonged to the same cluster with regard to the GDH gene; however, 2 of the 6 isolates belonged to a different cluster from the other 4 isolates with regard to the TPI gene. Therefore, a risk of transmission from cats to humans is suggested because of the detection of zoonotic Giardia genotypes in cat cafés.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Abe, N., Read, C., Thompson, R. C. and Iseki, M. (2005). Zoonotic genotype of Giardia intestinalis detected in a ferret. Journal of Parasitology 91, 179182.CrossRefGoogle Scholar
Abe, N., Tanoue, T., Noguchi, E., Ohta, G. and Sakai, H. (2010). Molecular characterization of Giardia duodenalis isolates from domestic ferrets. Parasitology Research 106, 733736.CrossRefGoogle ScholarPubMed
Berrilli, F., Di Cave, D., De Liberato, C., Franco, A., Scaramozzino, P. and Orecchia, P. (2004). Genotype characterisation of Giardia duodenalis isolates from domestic and farm animals by SSU-rRNA gene sequencing. Veterinary Parasitology 122, 193199.CrossRefGoogle ScholarPubMed
Bertrand, I., Albertini, L. and Schwartzbrod, J. (2005). Comparison of two target genes for detection and genotyping of Giardia lamblia in human feces by PCR and PCR-restriction fragment length polymorphism. Journal of Clinical Microbiology 43, 59405944.CrossRefGoogle ScholarPubMed
Ey, P. L., Mansouri, M., Kulda, J., Nohynkova, E., Monis, P. T., Andrews, R. H. and Mayrhofer, G. (1997). Genetic analysis of Giardia from hoofed farm animals reveals artiodactyl-specific and potentially zoonotic genotypes. Journal of Eukaryotic Microbiology 44, 626635.CrossRefGoogle ScholarPubMed
Guindon, S. and Gascuel, O. (2003). A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Systematic Biology 52, 696704.CrossRefGoogle ScholarPubMed
Homan, W. L., Gilsing, M., Bentala, H., Limper, L. and van Knapen, F. (1998). Characterization of Giardia duodenalis by polymerase-chain-reaction fingerprinting. Parasitology Research 84, 707714.CrossRefGoogle ScholarPubMed
Itagaki, T., Kinoshita, S., Aoki, M., Itoh, N., Saeki, H., Sato, N., Uetsuki, J., Izumiyama, S., Yagita, K. and Endo, T. (2005). Genotyping of Giardia intestinalis from domestic and wild animals in Japan using glutamate dehydrogenase gene sequencing. Veterinary Parasitology 133, 283287.CrossRefGoogle ScholarPubMed
Itoh, N., Muraoka, N., Kawamata, J., Aoki, M. and Itagaki, T. (2006). Prevalence of Giardia intestinalis infection in household cats of Tohoku district in Japan. The Journal of Veterinary Medical Science 68, 161163.CrossRefGoogle ScholarPubMed
Lasek-Nesselquist, E., Welch, D. M., Thompson, R. C., Steuart, R. F. and Sogin, M. L. (2009). Genetic exchange within and between assemblages of Giardia duodenalis. Journal of Eukaryotic Microbiology 56, 504518.CrossRefGoogle ScholarPubMed
Mintz, E. D., Hudson-Wragg, M., Mshar, P., Cartter, M. L. and Hadler, J. L. (1993). Foodborne giardiasis in a corporate office setting. The Journal of Infectious Diseases 167, 250253.CrossRefGoogle Scholar
Monis, P. T., Andrews, R. H., Mayrhofer, G. and Ey, P. L. (1999). Molecular systematics of the parasitic protozoan Giardia intestinalis. Molecular Biology and Evolution 16, 11351144.CrossRefGoogle ScholarPubMed
Monis, P. T., Andrews, R. H., Mayrhofer, G. and Ey, P. L. (2003). Genetic diversity within the morphological species Giardia intestinalis and its relationship to host origin. Infection, Genetics and Evolution 3, 2938.CrossRefGoogle ScholarPubMed
Monis, P. T., Andrews, R. H., Mayrhofer, G., Mackrill, J., Kulda, J., Isaac-Renton, J. L. and Ey, P. L. (1998). Novel lineages of Giardia intestinalis identified by genetic analysis of organisms isolated from dogs in Australia. Parasitology 116, 719.CrossRefGoogle ScholarPubMed
Monis, P. T., Mayrhofer, G., Andrews, R. H., Homan, W. L., Limper, L. and Ey, P. L. (1996). Molecular genetic analysis of Giardia intestinalis isolates at the glutamate dehydrogenase locus. Parasitology 112, 112.CrossRefGoogle ScholarPubMed
Nakamura-Uchiyama, F., Nakamura, I., Komiya, N., Ohnishi, K., Suzuki, J. and Kobayashi, S. (2008). Two cases of traveler's diarrhea infected in India due to internal protozoa infection. Clinical Parasitology 19, 4648 (in Japanese).Google Scholar
Read, C. M., Monis, P. T. and Thompson, R. C. (2004). Discrimination of all genotypes of Giardia duodenalis at the glutamate dehydrogenase locus using PCR-RFLP. Infection, Genetics and Evolution 4, 125130.CrossRefGoogle ScholarPubMed
Ritchie, L. S. (1948). An ether sedimentation technique for routine stool examinations. Bulletin United States Army Medical Dept 8, 326.Google ScholarPubMed
Ronquist, F. and Huelsenbeck, J. P. (2003). MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19, 15721574.CrossRefGoogle ScholarPubMed
Suzuki, J., Kobayashi, S., Murata, R., Tajima, H., Hashizaki, F., Yanagawa, Y. and Takeuchi, T. (2008). A survey of amoebic infections and differentiation of an Entamoeba histolytica-like variant (JSK2004) in nonhuman primates by a multiplex polymerase chain reaction. Journal of Zoo and Wildlife Medicine 39, 370379.CrossRefGoogle ScholarPubMed
Suzuki, J., Murata, R., Kobayashi, S., Yanagawa, Y. and Takeuchi, T. (2005). Epidemiological study on intestinal protozoan infections in institutions for people with intellectual disabilities. Clinical Parasitology 16, 5052 (in Japanese).Google Scholar
Tamura, K., Dudley, J., Nei, M. and Kumar, S. (2007). Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Molecular Biology and Evolution 24, 15961599.CrossRefGoogle ScholarPubMed
Teodorovic, S., Braverman, J. M. and Elmendorf, H. G. (2007). Unusually low levels of genetic variation among Giardia lamblia isolates. Eukaryotic Cell 6, 14211430.CrossRefGoogle ScholarPubMed
Thompson, J. D., Higgins, D. G. and Gibson, T. J. (1994). CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Research 22, 46734680.CrossRefGoogle ScholarPubMed
Thompson, R. C., Hopkins, R. M. and Homan, W. L. (2000). Nomenclature and genetic groupings of Giardia infecting mammals. Parasitology Today 16, 210213.CrossRefGoogle ScholarPubMed
van der Giessen, J. W., de Vries, A., Roos, M., Wielinga, P., Kortbeek, L. M. and Mank, T. G. (2006). Genotyping of Giardia in Dutch patients and animals: a phylogenetic analysis of human and animal isolates. International Journal for Parasitology 36, 849858.CrossRefGoogle ScholarPubMed
van Keulen, H., Macechko, P. T., Wade, S., Schaaf, S., Wallis, P. M. and Erlandsen, S. L. (2002). Presence of human Giardia in domestic, farm and wild animals, and environmental samples suggests a zoonotic potential for giardiasis. Veterinary Parasitology 108, 97107.CrossRefGoogle ScholarPubMed
Vasilopulos, R. J., Rickard, L. G., Mackin, A. J., Pharr, G. T. and Huston, C. L. (2007). Genotypic analysis of Giardia duodenalis in domestic cats. Journal of Veterinary Internal Medicine 21, 352355.CrossRefGoogle ScholarPubMed
White, K. E., Hedberg, C. W., Edmonson, L. M., Jones, D. B., Osterholm, M. T. and MacDonald, K. L. (1989). An outbreak of giardiasis in a nursing home with evidence for multiple modes of transmission. The Journal of Infectious Diseases 160, 298304.CrossRefGoogle Scholar