Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-23T14:28:38.575Z Has data issue: false hasContentIssue false

Richness, origin and structure of an Eimeria community in a population of Eastern cottontail (Sylvilagus floridanus) introduced into Italy

Published online by Cambridge University Press:  17 March 2010

S. BERTOLINO*
Affiliation:
University of Turin, DIVAPRA Entomology and Zoology, via L. Da Vinci 44, 10095 Grugliasco (TO), Italy
L. HOFMANNOVÁ
Affiliation:
Faculty of Veterinary Medicine, Department of Parasitology, Palackého 1-3, 612 42, Brno, Czech Republic
M. GIRARDELLO
Affiliation:
Centre for Ecology and Hydrology, MacLean Building, Wallingford, Oxfordshire, UK
D. MODRY
Affiliation:
Faculty of Veterinary Medicine, Department of Parasitology, Palackého 1-3, 612 42, Brno, Czech Republic Biology Centre of the ASCR, Institute of Parasitology, Branišovská 31, 370 05 České Budějovice, Czech Republic
*
*Corresponding author: University of Turin, DI.VA.P.R.A. Entomology and Zoology. Via L. da Vinci 44, 10095 Grugliasco (TO), Italy. Tel: +39 0116708677. Fax: +39 0116708586. E-mail: [email protected]

Summary

The composition and structure of a community of Eimeria was investigated in a population of Eastern cottontail (Sylvilagus floridanus) introduced into Italy. Eight Eimeria species were found, of which all but 1 had North American origins and were presumably introduced into Italy together with imported cottontails. The success of cottontails in spreading microparasites is probably related to their massive release for hunting purposes. Nearly all cottontails were infected with at least 1 Eimeria species, with bimonthly prevalence ranging from 0–6·3% (E. leporis) to 42·9–89·3% (E. environ). Bayesian model averaging and multivariate techniques were used to investigate the relationships between the occurrence of each parasite and the structure of the relative community. Among the host parameters, only sex was found to be associated with the prevalence of E. honessi, while the rest of the parameters were only weakly correlated with prevalence and species richness. This indicates that individual phenotypic host characteristics are probably less important than environmental factors in determining levels of parasite prevalence and diversity. The community of Eimeria species was probably structured by competition, with less species co-occurrence than expected under a null hypothesis. This was made evident by the low co-occurrence of E. environ and E. neoirresidua with E. poudrei, E. honessi, and E. maior.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Altizer, S., Harvell, D. and Friedle, E. (2003). Rapid evolutionary dynamics and disease threats to biodiversity. Trends in Ecology & Evolution 18, 589596.CrossRefGoogle Scholar
Angelici, F. M. and Spagnesi, M. (2008). Sylvilagus floridanus (J.A. Allen, 1890). In Fauna d'Italia Vol. XLIV Mammalia II. Erinaceomorpha, Soricomorpha, Lagomorpha, Rodentia (ed. Amori, G., Contoli, L. and Nappi, A.), pp. 305313. Edizioni Calderini e Il Sole 24 Ore, Milano, Italy.Google Scholar
Barton, D. P. (1997). Introduced animals and their parasites: the cane toad, Bufo marinus, in Australia. Australian Journal of Ecology 22, 316324.CrossRefGoogle Scholar
Bertolino, S., Wauters, L., De Bruyn, L. and Canestri-Trotti, G. (2003). Prevalence of coccidia parasites (Protozoa) in red squirrels (Sciurus vulgaris): effects of host phenotype and environmental factors. Oecologia 137, 286295.CrossRefGoogle ScholarPubMed
Chapman, J. A., Hockman, J. G., Magaly, M. and Ojeda, C. (1980). Sylvilagus floridanus. The American Society of Mammalogists. Mammal Species 136, 18.CrossRefGoogle Scholar
Connor, E. F. and Simberloff, D. (1979). The assembly of species communities: chance or competition? Ecology 60, 11321140.CrossRefGoogle Scholar
Dezfuli, B. S., Giari, L., De Biaggi, S. and Poulin, R. (2001). Associations and interactions among intestinal helminths of the brown trout, Salmo trutta, in northern Italy. Journal of Helminthology 75, 331336.CrossRefGoogle ScholarPubMed
Duszynski, D. W. (1986). Host specificity in the coccidia of small mammals: fact or fiction? Symposia Biologica Hungarica 33, 325337.Google Scholar
Duszynski, D. W. and Marquardt, W. C. (1969). Eimeria (Protozoa: Eimeriidae) of the cottontail rabbit Sylvilagus audubonii in Northeastern Colorado, with descriptions of three new species. Journal of Protozoology 16, 128137.CrossRefGoogle ScholarPubMed
Duszynski, D. W. and Upton, S. J. (2001). Cyclospora, Eimeria, Isospora and Cryptosporidium spp. In Protozoans from Parasitic Diseases of Wild Mammals. 2nd Edn (ed. Samuel, W. M., Pybus, M. J. and Kocan, A. A.), pp. 416459. Manson Publishing, London, UK.Google Scholar
Duszynski, D. W., Upton, S. J. and Couch, L. (2001). Coccidia (Eimeriidae) of Lagomorphs (hares and rabbits). Web site: http://biology.unm.edu/biology/coccidia/lagomorph.htmlGoogle Scholar
Duszynski, D. W. and Wilber, P. G. (1997). A guideline for the preparation of species descriptions in the Eimeriidae. Journal of Parasitology 83, 333336.CrossRefGoogle ScholarPubMed
Ellison, A. M. (2004). Bayesian inference in ecology. Ecology Letters 7, 509520.CrossRefGoogle Scholar
Esch, G., Bush, A. O. and Ano, J. M. (1990). Parasite Communities: Patterns and Processes. Chapman and Hall, London, UK.Google Scholar
Freeland, W. J. (1983). Parasites and the coexistence of animal host species. American Naturalists 121, 223236.CrossRefGoogle Scholar
Fuller, C. A. (1996). Population dynamics of two species of Eimeria (Apicomplexa: Eimeriidae) in deer mice (Peromyscus maniculatus): biotic and abiotic factors. Journal of Parasitology 82, 220225.CrossRefGoogle ScholarPubMed
Fuller, C. A. and Duszynski, D. W. (1997). Eimeria (Protozoa: Eimeriidae) from North American sciurids, Glaucomys sabrinus and Tamias townsendii: with a description of a new species. Journal of Parasitology 81, 187194.CrossRefGoogle Scholar
Gotelli, N. J. (2000). Null model analysis of species co-occurrence patterns. Ecology 8, 26062621.CrossRefGoogle Scholar
Gotelli, N. J. and Entsminger, G. L. (2009). EcoSim: Null Models Software for Ecology, Version 7.0. Acquired Intelligence Inc. & Kesey-Bear, NH, USA.Google Scholar
Gotelli, N. J. and Graves, G. R. (1996). Null Models in Ecology. Smithsonian Press, Washington DC, USA.Google Scholar
Gotelli, N. J. and Rohde, K. (2002). Co-occurrence of ectoparasites of marine fishes: a null model analysis. Ecology Letters 5, 8694.CrossRefGoogle Scholar
Grossman, C. J. (1985). Interactions between the gonadal steroids and the immune system. Science 227, 257261.CrossRefGoogle ScholarPubMed
Guégan, J. F. and Hugueny, B. (1994). A nested parasite species subset pattern in tropical fish: host as major determinant of parasite infracommunity structure. Oecologia 100, 184189.CrossRefGoogle ScholarPubMed
Higgs, S. and Nowell, F. (2000). Population biology of Eimeria (Protozoa: Apicomplexa) in Apodemus sylvaticus: a capture/recapture study. Parasitology 120, 355363.CrossRefGoogle ScholarPubMed
Holmes, J. C. and Price, P. W. (1986). Communities of parasites. In Community Ecology: Pattern and Processes (ed. Anderson, D. J. and Kikkawa, J.), pp 187213. Blackwell, Oxford, USA.Google Scholar
Hoeting, J. A., Madigan, D., Raftery, A. E. and Volinsky, C. T. (1999). Bayesian model averaging: a tutorial. Statistical Science 14, 382401.Google Scholar
Ihaka, R. and Gentleman, R. (1996). R: a language for data analysis and graphics. Journal of Computational and Graphical Statistics 5, 29903014.Google Scholar
Krebs, C. J. and Singleton, G. R. (1993). Indices of condition for small mammals. Australian Journal of Zoology 41, 317323.CrossRefGoogle Scholar
Legendre, P. and Legendre, L. (1998). Numerical Ecology. Elsevier, Amsterdam, The Netherlands.Google Scholar
Levine, N. D. and Ivens, V. (1965). The Coccidia parasites (Protozoa, Sporozoa) of rodents. Illinois Biological Monographs 33, The University of Illinois Press, Urbana, IL, USA.Google Scholar
Magurran, A. E. (2004). Measuring Biological Diversity. Blackwell Science Ltd. Oxford, UK.Google Scholar
Mitchell-Jones, A. J., Amori, G., Bogdanowicz, W., Kryštufek, B., Reijnders, P. J. H., Spitzenberger, F., Stubbe, M., Thissen, J. B. M., Vohralík, V. and Zima, J. (1999). The Atlas of European Mammals. Academic Press, London, UK.Google Scholar
Olden, J. D., Poff, N. L., Douglas, M. R., Douglas, M. E. and Fausch, K. D. (2004). Ecological and evolutionary consequences of biotic homogenization. Trends in Ecology & Evolution 19, 1824.CrossRefGoogle ScholarPubMed
Pakandl, M. (1990). Some remarks on the prevalence and species composition of hare coccidia. Folia Parasitologica 37, 3542.Google ScholarPubMed
Pellérdy, L. P. (1974). Coccidia and Coccidiosis. 2nd Edn. Paul Parey, Berlin und Hamburg, Germany and Akadémiai Kiádo, Japan.Google Scholar
Poulin, R. (1996). Richness, nestedness, and randomness in parasite infracommunity structure. Oecologia 105, 545551.CrossRefGoogle ScholarPubMed
Raftery, A. E. (1996). Approximate Bayes factors and accounting for model uncertainty in generalised linear models. Biometrika 83, 251266.CrossRefGoogle Scholar
Ricciardi, A. (2006). Are modern biological invasions an unprecedented form of global change? Conservation Biology 21, 329336.CrossRefGoogle Scholar
Rohde, K., Hayward, C. and Heap, M. (1995). Aspects of the ecology of metazoan ectoparasites of marine fishes. International Journal for Parasitology 25, 945970.CrossRefGoogle ScholarPubMed
Samuel, W. M., Pybus, M. J. and Kocan, A. A. (2001). Parasitic Diseases of Wild Mammals. Manson Publishing, The Veterinary Press, London, UK.CrossRefGoogle Scholar
Schalk, G. and Forbes, M. R. (1997). Male biases in parasitism of mammals: effects of study type, host age, and parasite taxon. Oikos 78, 6774.CrossRefGoogle Scholar
Seville, R. S., Stanton, N. L. and Gerow, K. (1996). Stable parasite guilds: coccidia in spermophiline rodents. Oikos 75, 365372.CrossRefGoogle Scholar
Stanton, N. L., Shults, L. M., Parker, M. and Seville, R. S. (1992). Coccidian assemblages in the Wyoming ground squirrel, Spermophilus elegans elegans. Journal of Parasitology 78, 323328.CrossRefGoogle ScholarPubMed
Tizzani, P., Lavazza, A., Capucci, L. and Meneguz, P. G. (2002). Presence of infectious agents and parasites in wild population of cottontail (Sylvilagus floridanus) and consideration on its role in the diffusion of pathogens infecting hares. European Association of Zoo- and Wildlife Veterinarians (EAZWV) 4th Scientific Meeting, Joint with the Annual Meeting of the European Wildlife Disease Association (EWDA), pp. 1–4. Heidelberg, Germany.Google Scholar
Torchin, M. E., Lafferty, K. D., Dobson, A. P., McKenzie, V. J. and Kuris, A. M. (2003). Introduced species and their missing parasites. Nature, London 421, 628630.CrossRefGoogle ScholarPubMed
Whittingham, M. J., Stephens, P. A., Bradbury, R. B. and Freckleton, R. P. (2006). Why do we still use stepwise modelling in ecology and behaviour? Journal of Animal Ecology 75, 11821189.CrossRefGoogle ScholarPubMed
Wiggins, J. P. and Rothenbacher, H. (1979). Eimeria azul sp. n. (Protozoa: Eimeriidae) from the eastern cottontail, Sylvilagus floridanus, in Pennsylvania. Journal of Parasitology 65, 393394.CrossRefGoogle Scholar
Wiggins, J. P., Cosgrove, M. and Rothenbacher, H. (1980). Gastrointestinal parasites of the eastern cottontail (Sylvilagus floridanus) in central Pennsylvania. Journal of Wildlife Diseases 18, 541544.CrossRefGoogle Scholar
Wintle, B. A., McCarthy, M. A., Volinsky, C. T. and Kavanagh, R. P. (2003). The use of Bayesian model averaging to better represent uncertainty in ecological models. Conservation Biology 17, 15791590.CrossRefGoogle Scholar