Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-26T21:01:10.388Z Has data issue: false hasContentIssue false

The RFLP analysis of the β-tubulin gene region in New World Leishmania

Published online by Cambridge University Press:  06 April 2009

A. Mendoza-León
Affiliation:
Centra de Biología Celular, Facultad de Ciencias, Universidad Central de Venezuela, Apartado 47577 Caracas 1041 A, Venezuela MRC Outstation of NIMR, Molteno Laboratories of Parasitology, Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, England
J. C. Havercroft
Affiliation:
MRC Outstation of NIMR, Molteno Laboratories of Parasitology, Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, England
D. C. Barker
Affiliation:
MRC Outstation of NIMR, Molteno Laboratories of Parasitology, Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, England

Summary

We have examined the similarities and differences in the organization of tubulin genes in New World Leishmania by restriction endonuclease digestion of genomic DNA and Southern blot analysis, using heterologous and homologous tubulin gene probes. As judged by the hybridization pattern and the restriction fragment length polymorphism (RFLP), there were large differences in both the restriction and hybridization patterns of the β-tubulin sequences between stocks of the mexicana and braziliensis complexes. There were similarities in the hybridization patterns of different speciesof the mexicana complex. In contrast, a high heterogeneity was found between species of the braziliensis complex which includes intraspecific variation. The results suggest that this polymorphism may be associated with random mutations. The same analysis gave evidence of large differences in the β-tubulin gene restriction pattern between New and Old World Leishmania. This variation in the β-tubulin gene region was sufficient to distinguish between New and Old World Leishmania groups and between stocks of the mexicana and braziliensis complexes.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Amorin, M. I., Momen, H. & Traub-Cseko, Y. M. (1993). Trypanosoma rangeli: sequence analysis of β-tubulin gene suggest closer relationship to Trypanosoma brucei than to Trypanosoma cruzi. Acta Tropica 53, 99105.CrossRefGoogle Scholar
Bellofato, V. & Cross, G. A. M. (1988). Characterisation of RNA transcripts from the alpha tubulin gene cluster of L. seymouri. Nucleic Acid Research 16, 3455–69.CrossRefGoogle Scholar
Benton, W. D. & Davis, R. W. (1977). Screening λgt recombinant clones by hybridisation to single plaques in situ. Science 196, 180–2.CrossRefGoogle ScholarPubMed
Briones, M. R. S., Nelson, K., Beverley, S. M., Alfonso, H. T., Camargo, E. P. & Floeter-Winter, L. M. (1992). Leishmania tarentolae taxonomic relatedness inferred from phylogenetic analysis of the small subunit ribosomal RNA gene. Molecular and Biochemical Parasitology 53, 121–8.CrossRefGoogle ScholarPubMed
Burgoyne, R. D., Cambray-Deakin, M. A., Lewis, S. A., Sarkar, S. & Cowan, N. J. (1988). Differential distribution of β-tubulin isotypes in cerebellum. The EMBO Journal, 7 2311–19.CrossRefGoogle ScholarPubMed
Cleveland, D. W. & Sullivan, K. F. (1985). Molecular biology and genetics of tubulin. Annual Review of Biochemistry 54, 331–65.CrossRefGoogle ScholarPubMed
Eresh, S., Mendoza-León, A. & Barker, D. C. (1993). A small chromosome of Leishmania (Viannid) braziliensis contains multicopy sequences which are complex specific. Acta Tropica 55, 3346.CrossRefGoogle ScholarPubMed
Esquenazi, D., Morel, C. M. & Traub-Cseko, Y. M. (1989). Characterisation of tubulin genes in T. rangeli. Molecular and Biochemical Parasitology 34, 253–60.CrossRefGoogle Scholar
Feinberg, A. P. & Vogelstein, B. (1983). A technique for radiolabelling DNA restriction endonuclease fragments to high specific activity. Analytical Biochemistry 132, 613.CrossRefGoogle ScholarPubMed
Fong, D. & Chang, K.-P. (1981). Tubulin biosynthesis in the developmental cycle of a parasitic protozoan Leishmania mexicana: changes during differentiation of motile and nonmotile stages. Proceedings of the National Academy of Sciences, USA 78, 7624–8.CrossRefGoogle ScholarPubMed
Fong, D. & Lee, B. (1988). Beta tubulin gene of the parasitic protozoan L. mexicana. Molecular and Biochemical Parasitology 31, 97106.CrossRefGoogle Scholar
Fong, D., Wallach, M., Keithly, J., Melera, P. W. & Chang, K.-P. (1984). Differential expression of mRNAs for α- and β-tubulin during differentiation of the parasitic protozoan Leishmania mexicana. Proceedings of the National Academy of Sciences, USA 81, 5782–6.CrossRefGoogle ScholarPubMed
Heery, D. M., Gannon, F. & Powell, R. (1990). A simple method for subcloning DNA fragments from gel slices. Trends in Genetics 6, 173.Google ScholarPubMed
Huang, P., Roberts, B. E., Pratt, D. M., David, J. R. & Miller, J. (1984). Structure and arrangement of the β-tubulin genes of Leishmania tropica. Molecular and Cellular Biology 4, 1372–83.Google ScholarPubMed
Jaffe, Ch. L., Grimaldi, G. & Pratt, D. M. (1984). The cultivation and cloning of Leishmania. In Genes and Antigens of Parasites 2nd Edn (ed. Morel, C. M.), pp. 4791. UNDP/WORLD BANK/WHO, FINEP-CNPq-FIOCRUZ.Google Scholar
Kukla, B. A., Majiwa, P. A. O., Young, J. R., Moloo, S. K. & yoi, O. Ole-Moi (1987). Use of species-specific DNA probes for detection and identification of trypanosome infection in tsetse flies. Parasitology 95, 116.CrossRefGoogle ScholarPubMed
Landfear, S. M. & Wirth, D. (1984). Control of tubulin gene expression in the parasitic protozoa Leishmania enriettii. Nature, London 309, 716–17.CrossRefGoogle ScholarPubMed
Landfear, S. M., Mcmahon-pratt, D. & Wirth, D. F. (1983). Tandem arrangement of tubulin genes in the protozoan parasite Leishmania enriettii. Molecular and Cellular Biology 3, 1070–6.Google ScholarPubMed
Maingon, R., Gerke, R., Rodriguez, M., Urbina, J., Hoenicka, J., Negri, S., Aguirre, T., Nehlin, J., Knapp, T. & Crampton, J. (1988). The tubulin genes of T. cruzi. European Journal of Biochemistry 171, 285–91.CrossRefGoogle Scholar
Majiwa, P. A. O., Masake, R. A., Nantulya, V. M., Hamers, R. & Matthyssens, G. (1985). Trypanosoma (Nannomonas) congolense: identification of two karyoptic groups. The EMBO Journal 4, 3307–13.CrossRefGoogle Scholar
Reiner, N. E., Lo, R., Llanos-Cuentas, A., Guerra, H., Button, L. L. & McMaster, W. R. (1989). Genetic heterogeneity in Peruvian Leishmania isolates. American Journal of Tropical Medicine and Hygiene 41, 416–21.CrossRefGoogle ScholarPubMed
Seebeck, T., Whittaker, P. A., Imboden, M. A., Hardman, N. & Brown, R. (1983). Tubulin genes of T. brucei: A tightly clustered family of alternating genes. Proceedings of the National Academy of Sciences, USA 80, 4634–8.CrossRefGoogle ScholarPubMed
Smith, G. E. & Summers, M. D. (1980). The bidirectional transfer of DNA and RNA to nitrocellulose or diazobenzyloxymethyl-paper. Analytical Biochemistry 109, 123–9.CrossRefGoogle ScholarPubMed
Spithill, T. W. & Samaras, N. (1985). The molecular karyotype of Leishmania major and mapping of alpha and beta tubulin gene families to multiple unlinked chromosomal loci. Nucleic Acids Research 13, 4155–69.CrossRefGoogle ScholarPubMed
Spithill, T. W. & Samaras, N. (1987). Genomic organisation, chromosomal location and transcription of dispersed and repeated tubulin genes in Leishmania major. Molecular and Biochemical Parasitology 24, 2337.CrossRefGoogle ScholarPubMed
Valenzuela, P., Quiroga, M., Zaldivar, J., Rutter, W. J., Kirschner, M. W. & Cleveland, D. (1981). Nucleotide and corresponding amino acid sequences encoded by α- and β-tubulin mRNAs. Nature, London 289, 650–5.CrossRefGoogle ScholarPubMed