Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-22T16:42:02.977Z Has data issue: false hasContentIssue false

Revisiting the role of dissimilarity of host communities in driving dissimilarity of ectoparasite assemblages: non-linear vs linear approach

Published online by Cambridge University Press:  11 May 2017

LUTHER VAN DER MESCHT*
Affiliation:
Mitrani Department of Desert Ecology, Swiss Institute for Dryland Environmental and Energy Research, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, 8499000 Midreshet Ben-Gurion, Israel Wyler Department of Dryland Agriculture, French Associates Institute for Agriculture and Biotechnology of Drylands, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, 84990 Midreshet Ben-Gurion, Israel
IRINA S. KHOKHLOVA
Affiliation:
Wyler Department of Dryland Agriculture, French Associates Institute for Agriculture and Biotechnology of Drylands, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, 84990 Midreshet Ben-Gurion, Israel
ELIZABETH M. WARBURTON
Affiliation:
Mitrani Department of Desert Ecology, Swiss Institute for Dryland Environmental and Energy Research, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, 8499000 Midreshet Ben-Gurion, Israel
BORIS R. KRASNOV
Affiliation:
Mitrani Department of Desert Ecology, Swiss Institute for Dryland Environmental and Energy Research, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, 8499000 Midreshet Ben-Gurion, Israel
*
*Corresponding author: Mitrani Department of Desert Ecology, Swiss Institute for Dryland Environmental and Energy Research, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede-Boqer Campus, 84990 Midreshet Ben-Gurion, Israel. E-mail: [email protected]

Summary

We revisited the role of dissimilarity of host assemblages in shaping dissimilarity of flea assemblages using a non-linear approach. Generalized dissimilarity models (GDMs) were applied using data from regional surveys of fleas parasitic on small mammals in four biogeographical realms. We compared (1) model fit, (2) the relative effects of host compositional and phylogenetic turnover and geographic distance on flea compositional and phylogenetic turnover, and (3) the rate of flea turnover along gradients of host turnover and geographic distance with those from earlier application of a linear approach. GDMs outperformed linear models in explaining variation in flea species turnover and host dissimilarity was the best predictor of flea dissimilarity, irrespective of scale. The shape of the relationships between flea compositional turnovers along host compositional turnover was similar in all realms, whereas turnover along geographic distance differed among realms. In contrast, the rate of flea phylogenetic turnover along gradients of host phylogenetic turnover differed among realms, whereas flea phylogenetic turnover did not depend on geographic distance in any realm. We demonstrated that a non-linear approach (a) explained spatial variation in parasite community composition better than and (b) revealed patterns that were obscured by earlier linear analyses.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Bell, K. L., Heard, T. A., Manion, G., Ferrier, S. and Klinken, R. D. (2013). The role of geography and environment in species turnover: phytophagous arthropods on a Neotropical legume. Journal of Biogeography 40, 17551766.CrossRefGoogle Scholar
Bininda-Emonds, O. R. P., Cardillo, M., Jones, K. E., MacPhee, R. D. E., Beck, R. M. D., Grenyer, R., Price, S. A., Vos, R. A., Gittleman, J. L. and Purvis, A. (2007). The delayed rise of present-day mammals. Nature 446, 507512.Google Scholar
Borcard, D., Legendre, P. and Drapeau, P. (1992). Partialling out the spatial component of ecological variation. Ecology 73, 10451055.Google Scholar
Bray, J. R. and Curtis, J. T. (1957). An ordination of the upland forest communities of southern Wisconsin. Ecological Monographs 27, 325349.Google Scholar
Brooks, D. R., León-Règagnon, V., McLennan, D. A. and Zelmer, D. (2006). Ecological fitting as a determinant of the community structure of platyhelminth parasites of anurans. Ecology 87, S76S85.Google Scholar
Bryant, J. A., Lamanna, C., Morlon, H., Kerkhoff, A. J., Enquist, B. J. and. Green, J. L. (2008). Microbes on mountainsides: contrasting elevational patterns of bacterial and plant diversity. Proceedings of the National Academy of Sciences of the United States of America 105, 1150511511.Google Scholar
Cavender-Bares, J., Kozak, K. H., Fine, P. V. and Kembel, S. W. (2009). The merging of community ecology and phylogenetic biology. Ecology Letters 12, 693715.Google Scholar
Combes, C. (2001). Parasitism. The Ecology and Evolution of Intimate Interactions. University of Chicago Press, Chicago, IL, USA.Google Scholar
Ferrier, S. (2002). Mapping spatial pattern in biodiversity for regional conservation planning: where to from here? Systematic Biology 51, 331363.Google Scholar
Ferrier, S., Gray, M. R., Cassis, G. A. and Wilkie, L. (1999). Spatial turnover in species composition of ground-dwelling arthropods, vertebrates and vascular plants in north-east New South Wales: implications for selection of forest reserves. In The Other 99%. The Conservation and Biodiversity of Invertebrates (ed. Ponder, By W. and Lunney, D.), pp. 6876. Royal Zoological Society of New South Wales, Sydney, Australia.Google Scholar
Ferrier, S., Drielsma, M., Manion, G. and Watson, G. (2002). Extended statistical approaches to modelling spatial pattern in biodiversity in north-east New South Wales: II. Community level modelling. Biodiversity and Conservation 11, 23092338.CrossRefGoogle Scholar
Ferrier, S., Manion, G., Elith, J. and Richardson, K. (2007). Using generalized dissimilarity modelling to analyse and predict patterns of beta diversity in regional biodiversity assessment. Diversity and Distributions 13, 252264.CrossRefGoogle Scholar
Fitzpatrick, M. C., Sanders, N. J., Normand, S., Svenning, J-C., Ferrier, S., Gove, A. D. and Dunn, R. R. (2013). Environmental and historical imprints on beta diversity: insights from variation in rates of species turnover along gradients. Proceedings of the Royal Society B 280, 20131201.Google Scholar
Gaston, K. J. (2000). Global patterns in biodiversity. Nature 405, 220227.CrossRefGoogle ScholarPubMed
Hadfield, J. D., Krasnov, B. R., Poulin, R. and Nakagawa, S. (2014). A tale of two phylogenies: comparative analyses of ecological interactions. American Naturalist 183, 174187.Google Scholar
Hoberg, E. P. and Brooks, D. R. (2010). Beyond vicariance: integrating taxon pulses, ecological fitting, and oscillation in evolution and historical biogeography. In The Biogeography of Host-Parasite Interactions (ed. Morand, S. and Krasnov, B. R.), pp. 720. Oxford University Press, Oxford, UK.Google Scholar
Janzen, D. H. (1985). On ecological fitting. Oikos 45, 308310.CrossRefGoogle Scholar
Jones, M. M., Ferrier, S., Condit, R., Manion, G., Aguilar, S. and Perez, R. (2013). Strong congruence in tree and fern community turnover in response to soils and climate in central Panama. Journal of Ecology 101, 506516.Google Scholar
Kembel, S. W., Cowan, P. D., Helmus, M. R., Cornwell, W. K., Morlon, H., Ackerly, D. D., Blomberg, S. P. and Webb, C. O. (2010). Picante: R tools for integrating phylogenies and ecology. Bioinformatics 26, 14631464.CrossRefGoogle ScholarPubMed
Kottek, M., Grieser, J., Beck, C., Rudolf, B. and Rubel, F. (2006). World map of the Köppen–Geiger climate classification updated. Meteorologische Zeitschrift 15, 259263.Google Scholar
Krasnov, B. R. and Shenbrot, G. I. (2002). Coevolutionary events in history of association of jerboas (Rodentia: Dipodidae) and their flea parasites. Israel Journal of Zoology 48, 331350.CrossRefGoogle Scholar
Krasnov, B. R., Shenbrot, G. I., Medvedev, S. G., Vatschenok, V. S. and Khokhlova, I. S. (1997). Host–habitat relation as an important determinant of spatial distribution of flea assemblages (Siphonaptera) on rodents in the Negev Desert. Parasitology 114, 159173.CrossRefGoogle ScholarPubMed
Krasnov, B. R., Khokhlova, I. S., Fielden, L. J. and Burdelova, N. V. (2001). Effect of air temperature and humidity on the survival of pre-imaginal stages of two flea species (Siphonaptera: Pulicidae). Journal of Medical Entomology 38, 629637.CrossRefGoogle ScholarPubMed
Krasnov, B. R., Burdelova, N. V., Shenbrot, G. I. and Khokhlova, I. S. (2002 a). Annual cycles of four flea species in the central Negev Desert. Medical and Veterinary Entomology 16, 266276.CrossRefGoogle ScholarPubMed
Krasnov, B. R., Khokhlova, I. S., Fielden, L. F. and Burdelova, N. V. (2002 b). The effect of substrate on survival and development of two species of desert fleas (Siphonaptera: Pulicidae). Parasite 9, 135142.Google Scholar
Krasnov, B. R., Shenbrot, G. I., Khokhlova, I. S. and Poulin, R. (2007). Geographic variation in the ‘bottom-up’ control of diversity: fleas and their small mammalian hosts. Global Ecology and Biogeography 16, 179186.CrossRefGoogle Scholar
Krasnov, B. R., Mouillot, D., Shenbrot, G. I., Khokhlova, I. S., Vinarski, M. V., Korallo-Vinarskaya, N. P. and Poulin, R. (2010). Similarity in ectoparasite faunas of Palaearctic rodents as a function of host phylogenetic, geographic or environmental distances: which matters the most? International Journal for Parasitology 40, 807817.CrossRefGoogle ScholarPubMed
Krasnov, B.R., Poulin, R. and Mouillot, D. (2011). Scale-dependence of phylogenetic signal in ecological traits of ectoparasites. Ecography 34, 114122.Google Scholar
Krasnov, B. R., Mouillot, D., Khokhlova, I. S., Shenbrot, G. I. and Poulin, R. (2012). Compositional and phylogenetic dissimilarity of host communities drives dissimilarity of ectoparasite assemblages: geographical variation and scale-dependence. Parasitology 139, 338347.CrossRefGoogle ScholarPubMed
Krasnov, B. R., Kiefer, D., Warburton, E. M. and Khokhlova, I. S. (2016 a). Szidat's rule re-tested: relationships between flea and host phylogenetic clade ranks in four biogeographic realms. Parasitology 143, 723731.CrossRefGoogle Scholar
Krasnov, B. R., Shenbrot, G. I., Khokhlova, I. S. and Degen, A. A. (2016 b). Trait-based and phylogenetic associations between parasites and their hosts: a case study with small mammals and fleas in the Palearctic. Oikos 125, 2938.CrossRefGoogle Scholar
Legendre, P. and Legendre, L. (1998). Numerical Ecology, 2nd English Edn. Elsevier, Amsterdam, The Netherlands.Google Scholar
Legendrè, P., Borcard, D. and Peres-Neto, P. R. (2005). Analyzing beta diversity: partitioning the spatial variation of community composition data. Ecological Monographs 75, 435450.Google Scholar
Lichstein, J. W. (2007). Multiple regression on distance matrices: a multivariate spatial analysis tool. Plant Ecology 188, 117131.Google Scholar
Lu, L. and Wu, H. (2005). Morphological phylogeny of Geusibia Jordan, 1932 (Siphonaptera: Leptopsyllidae) and the host-parasite relationships with pikas. Systematic Parasitology 61, 6578.Google Scholar
Manion, G., Lisk, M., Ferrier, S., Nieto-Lugilde, D. and Fitzpatrick, M. C. (2016). gdm: Functions for Generalized Dissimilarity Modeling. R package version 1.2.3. https://CRAN.R-project.org/package=gdm.Google Scholar
Manly, B. F. (1986). Randomization and regression methods for testing for associations with geographical, environmental and biological distances between populations. Research in Population Ecology 28, 201218.CrossRefGoogle Scholar
Medvedev, S. G. (1996). Geographical distribution of families of fleas (Siphonaptera). Entomological Review 76, 978992.Google Scholar
Medvedev, S. G. (2005). An Attempted System Analysis of the Evolution of the Order of Fleas (Siphonaptera). Lectures in Memoriam N. A. Kholodkovsky, No. 57. Russian Entomological Society and Zoological Institute of Russian Academy of Sciences, Saint Petersburg, Russia (in Russian).Google Scholar
Medvedev, S. G. (2014). The Palaearctic centers of taxonomic diversity of fleas (Siphonaptera). Entomological Review 94, 345358.Google Scholar
Medvedev, S. G. and Kotti, B. K. (2012). Patterns of formation of the flea (Siphonaptera) fauna in the Caucasus. Entomological Review 92, 409421.CrossRefGoogle Scholar
Medvedev, S. G. and Kotti, B. K. (2013). Host associations and origin in the formation of the Caucasian fauna of fleas (Siphonaptera). Entomological Review 93, 293308.Google Scholar
Nekola, J. C. and White, P. S. (1999). The distance decay of similarity in biogeography and ecology. Journal of Biogeography 26, 867878.CrossRefGoogle Scholar
Oksanen, J., Blanchet, F. G., Friendly, M., Kindt, R., Legendre, P., McGlinn, D., Minchin, P. R., O'Hara, R. B., Simpson, G. L., Solymos, P., Stevens, M. H. H., Szoecs, E. and Wagner, H. (2016). vegan: Community Ecology Package. R package version 2.4–1. https://CRAN.R-project.org/package=vegan.Google Scholar
Poulin, R. (2007). Evolutionary Ecology of Parasites: from Individuals to Communities, 2nd Edn. Princeton University Press, Princeton, NJ, USA.CrossRefGoogle Scholar
Poulin, R. and Morand, S. (1999). Geographical distances and the similarity among parasite communities of conspecific host populations. Parasitology 119, 369374.CrossRefGoogle ScholarPubMed
R Development Core Team (2015). R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, http://www.R-project.org/.Google Scholar
Ricklefs, R. E. (1987). Community diversity: relative roles of local and regional processes. Science 235, 167171.Google Scholar
Ricklefs, R. E. (2004). A comprehensive framework for global patterns in biodiversity. Ecology Letters 7, 115.Google Scholar
Rosauer, D. F., Ferrier, S., Williams, K. J., Manion, G., Keogh, J. S. and Laffan, S. W. (2014). Phylogenetic generalised dissimilarity modelling: a new approach to analysing and predicting spatial turnover in the phylogenetic composition of communities. Ecography 37, 2132.Google Scholar
Soininen, J., McDonald, R. and Hillebrand, H. (2007). The distance decay of similarity in ecological communities. Ecography 30, 312.Google Scholar
Stegen, J. C. and Hurlbert, A. H. (2011). Inferring ecological processes from taxonomic, phylogenetic and functional trait beta-diversity. PLoS ONE 6, e20906.Google Scholar
Traub, R. (1980). The zoogeography and evolution of some fleas, lice and mammals. In Fleas. Proceedings of the International Conference on Fleas, Ashton Wold, Peterborough, UK, 21–25 June 1977 (ed. Traub, R. and Starke, H.), pp. 93172. A.A. Balkema, Rotterdam, The Netherlands.Google Scholar
Traub, R. (1985). Coevolution of fleas and mammals. In Coevolution of Parasitic Arthropods and Mammals (ed. Kim, K. C.), pp. 295437. John Wiley & Sons, New York, USA.Google Scholar
Tuomisto, H. and Roukolainen, K. (2006). Analyzing or explaining beta diversity? Understanding the targets of different methods of analysis. Ecology 87, 26972708.CrossRefGoogle ScholarPubMed
Vinarski, M. V., Korallo, N. P., Krasnov, B. R., Shenbrot, G. I. and Poulin, R. (2007). Decay of similarity of gamasid mite assemblages parasitic on Palaearctic small mammals: geographic distance, host-species composition or environment. Journal of Biogeography 34, 16911700.CrossRefGoogle Scholar
Whiting, M. F., Whiting, A. S., Hastriter, M. W. and Dittmar, K. (2008). A molecular phylogeny of fleas (Insecta: Siphonaptera): origins and host associations. Cladistics 24, 677707.Google Scholar
Wiens, J. A. (1989). The Ecology of Bird Communities. Foundations and Patterns. Cambridge University Press, Cambridge, UK.CrossRefGoogle Scholar
Zhu, Q., Hastriter, M. W., Whiting, M. F. and Dittmar, K. (2015). Fleas (Siphonaptera) are Cretaceous, and evolved with Theria. Molecular Phylogenetics and Evolution 90, 129139.CrossRefGoogle ScholarPubMed
Supplementary material: File

Van Der Mescht supplementary material

Appendix 1-2

Download Van Der Mescht supplementary material(File)
File 232.3 KB