Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-29T15:11:00.504Z Has data issue: false hasContentIssue false

Resistance mechanism development to the topoisomerase-I inhibitor Hoechst 33342 by Leishmania donovani

Published online by Cambridge University Press:  25 April 2005

J.-F. MARQUIS
Affiliation:
Centre for the Study of Host Resistance and the Research Institute of McGill University Health Centre, Departments of Experimental Medicine, Microbiology and Immunology, McGill University, Montréal, Québec, Canada, H3A 2B4 Centre de Recherche en Infectiologie du CHUQ, Département de Biologie Médicale, Université Laval, Sainte-Foy, Québec, Canada, G1V 4G2
I. HARDY
Affiliation:
Centre for the Study of Host Resistance and the Research Institute of McGill University Health Centre, Departments of Experimental Medicine, Microbiology and Immunology, McGill University, Montréal, Québec, Canada, H3A 2B4 Centre de Recherche en Infectiologie du CHUQ, Département de Biologie Médicale, Université Laval, Sainte-Foy, Québec, Canada, G1V 4G2
M. OLIVIER
Affiliation:
Centre for the Study of Host Resistance and the Research Institute of McGill University Health Centre, Departments of Experimental Medicine, Microbiology and Immunology, McGill University, Montréal, Québec, Canada, H3A 2B4

Abstract

The bisbenzimidazole compound Hoechst 33342 (Ho342) has been identified as a specific Topoisomerase-I (Topo-I) inhibitor in mammalian cells. More recently, we have reported the ability of Ho342 to target L. donovani Topo-I, leading to parasite growth inhibition in vitro by mechanisms involving DNA breakage and apoptosis-like phenomenon. As the Ho342 lead molecule (2,5′-Bi-1H-benzimidazole) can be used as a starting structure for derivative compounds more effective against Leishmania, defining the Ho342 resistance mechanism(s) in Leishmania represents an important strategic tool. In the present study, we selected resistant parasites to Ho342 (LdRHo.300). While we observed an increase of the Topo-I gene expression correlated by a higher Topo-I DNA relaxation activity, the Topo-I genes (LdTOP1A and LdTOP1B) sequencing did not reveal any mutation for the resistant parasites. Moreover, our results on Ho342 cellular accumulation suggested the presence of a potential energy-dependent Ho342 transporter in the wild-type parasite, and that an alteration of this transporter has occurred in LdRHo.300, leading to an altered drug accumulation. Collectively, Ho342 resistance characterization provided results supporting that the resistance developed by LdRHo.300 involves complex mechanisms, most likely dominated by an altered drug accumulation, providing new insight in the Ho342 resistance mechanisms.

Type
Research Article
Copyright
2005 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

BECK, W. T. ( 1987). The cell biology of multiple drug resistance. Biochemical Pharmacology 36, 28792888.CrossRefGoogle Scholar
BILLAUT-MULOT, O., FERNANDEZ-GOMEZ, R., LOYENS, M. & OUAISSI, A. ( 1996). Trypanosoma cruzi elongation factor 1-alpha: nuclear localization in parasites undergoing apoptosis. Gene 174, 1926.Google Scholar
BORST, P. & OUELLETTE, M. ( 1995). New mechanisms of drug resistance in parasitic protozoa. Annual Review of Microbiology 49, 427460.CrossRefGoogle Scholar
BRATA DAS, B., SEN, N., GANGULY, A. & MAJUMDER, H. K. ( 2004). Reconstitution and functional characterization of the unusual bi-subunit type I DNA topoisomerase from Leishmania donovani. FEBS Letters 565, 8188.CrossRefGoogle Scholar
BROCCOLI, S., MARQUIS, J. F., PAPADOPOULOU, B., OLIVIER, M. & DROLET, M. ( 1999). Characterization of a Leishmania donovani gene encoding a protein that closely resembles a type IB topoisomerase. Nucleic Acids Research 27, 27452752.CrossRefGoogle Scholar
CHAMPOUX, J. J. ( 1976). Evidence for an intermediate with a single-strand break in the reaction catalyzed by the DNA untwisting enzyme. Proceedings of the National Academy of Sciences, USA 73, 34883491.CrossRefGoogle Scholar
CHAMPOUX, J. J. ( 1978). Mechanism of the reaction catalyzed by the DNA untwisting enzyme: attachment of the enzyme to 3′-terminus of the nicked DNA. Journal of Molecular Biology 118, 441446.CrossRefGoogle Scholar
CHAMPOUX, J. J. ( 1981). DNA is linked to the rat liver DNA nicking-closing enzyme by a phosphodiester bond to tyrosine. Journal of Biological Chemistry 256, 48054809.Google Scholar
CHEESMAN, S. ( 2000). The topoisomerases of protozoan parasites. Parasitology Today 16, 277281.CrossRefGoogle Scholar
CHEN, A. Y., YU, C., BODLEY, A., PENG, L. F. & LIU, L. F. ( 1993 a). A new mammalian DNA Topoisomerase I poison Hoechst 33342: cytotoxicity and drug resistance in human cell cultures. Cancer Research 53, 13321337.Google Scholar
CHEN, A. Y., YU, C., GATTO, B. & LIU, L. F. ( 1993 b). DNA minor groove-binding ligands: a different class of mammalian DNA topoisomerase I inhibitors. Proceedings of the National Academy of Sciences, USA 90, 81318135.Google Scholar
DEFFIE, A. M., ALAM, T., SENEVIRATNE, C., BEENKEN, S. W., BATRA, J. K., SHEA, T. C., HENNER, W. D. & GELDENBERG, G. J. ( 1988). Multifactorial resistance to Adriamycin: relationship of DNA repair, glutathione transferase activity drug efflux, and P-glycoprotein in cloned cell lines of Adriamycin-sensitive and resistant P388 leukemia. Cancer Research 48, 35953602.Google Scholar
DESJEUX, P. ( 1996). Leishmaniasis. Public health aspects and control. Clinical Dermatology 14, 417423.CrossRefGoogle Scholar
DUTTAROY, A., BOURBEAU, D., WANG, X. L. & WANG, E. ( 1998). Apoptosis rate can be accelerated or decelerated by overexpression or reduction of the level of elongation factor-1 alpha. Experimental Cell Research 238, 168176.CrossRefGoogle Scholar
ELLENBERGER, T. E. & BEVERLEY, S. M. ( 1987). Biochemistry and regulation of folate and methotrexate transport in Leishmania major. Journal of Biological Chemistry 262, 1005310058.Google Scholar
ENDICOTT, J. A. & LING, V. ( 1989). The biochemistry of P-glycoprotein-mediated multidrug resistance. Annual Review of Biochemistry 58, 351375.CrossRefGoogle Scholar
GELLERT, M. ( 1981). DNA topoisomerases. Annual Review of Biochemistry 50, 879910.CrossRefGoogle Scholar
HERWALDT, B. L. ( 1999). Leishmaniasis. Lancet 354, 11911199.CrossRefGoogle Scholar
JAYANARAYAN, K. G. & DEY, C. S. ( 2002). Resistance to arsenite modulates expression of beta- and gamma-tubulin and sensitivity to paclitaxel during differentiation of Leishmania donovani. Parasitology Research 88, 754759.Google Scholar
KIM, J. S., GATTO, B., YU, C., LIU, A., LIU, L. F. & LAVOIE, E. J. ( 1996 a). Substituted 2,5′-Bi-1H-benzimidazoles: topoisomerase I inhibition and cytotoxicity. Journal of Medicinal Chemistry 39, 992998.Google Scholar
KIM, J. S., SUN, Q., GATTO, B., YU, C., LIU, A., LIU, L. F. & LAVOIE, E. J. ( 1996 b). Structure-activity relationships of benzimidazoles and related heterocycles as topoisomerase I poisons. Bioorganic and Medicinal Chemistry 4, 621630.Google Scholar
KUNDIG, C., HAIMEUR, A., LEGARE, D., PAPADOPOULOU, B. & OUELLETTE, M. ( 1999). Increased transport of pteridines compensates for mutations in the high affinity folate transporter and contributes to methotrexate resistance in the protozoan parasite Leishmania tarentolae. EMBO Journal 18, 23422351.CrossRefGoogle Scholar
LIU, L. F. ( 1989). DNA topoisomerase poisons as antitumor drugs. Annual Review of Biochemistry 58, 351375.CrossRefGoogle Scholar
LIU, L. F., LIU, C. C. & ALBERTS, B. M. ( 1979). T4 DNA topoisomerase: a new ATP-dependent enzyme essential for initiation of T4 bacteriophage DNA replication. Nature, London 281, 456461.CrossRefGoogle Scholar
LOUASSINI, M., FOULQUIE, M. R., BENITEZ, R. & ADROHER, F. J. ( 1999). Activity of key enzymes in glucose catabolism during the growth and metacyclogenesis of Leishmania infantum. Parasitology Research 85, 300306.CrossRefGoogle Scholar
MARQUIS, J. F., DROLET, M. & OLIVIER, M. ( 2003). Consequence of Hoechst 33342-mediated Leishmania DNA topoisomerase-I inhibition on parasite replication. Parasitology 126, 2130.CrossRefGoogle Scholar
NAKAZAWA, M., MOREIRA, D., LAURENT, J., LE GUYADER, H., FUKAMI, Y. & ITO, K. ( 1999). Biochemical analysis of the interaction between elongation factor 1 alpha and alpha/beta-tubulins from a ciliate, Tetrahymena pyriformis. FEBS Letters 453, 2934.CrossRefGoogle Scholar
OLIVIER, M. & TANNER, C. E. ( 1987). Susceptibilities of macrophage populations to infection in vitro by Leishmania donovani. Infection and Immunity 55, 467471.Google Scholar
POMMIER, Y., LETEURTRE, F., FESEN, M. R., FUJIMORI, A., BERTRAND, R., SOLARY, E., KOHLHAGEN, G. & KOHN, K. W. ( 1994). Cellular determinants of sensitivity and resistance to DNA topoisomerase inhibitors. Cancer Investigation 12, 530542.CrossRefGoogle Scholar
PRASAD, V. & DEY, C. S. ( 2000). Tubulin is hyperphosphorylated on serine and tyrosine residues in arsenite-resistant Leishmania donovani promastigotes. Parasitology Research 86, 876880.CrossRefGoogle Scholar
RANGARAJAN, M., KIM, J., JIN, S., SIM, S., LIU, A., PILCH, D., LIU, L. & LAVOIE, E. ( 2000). 2″-substituted 5-phenylterbenzimidazoles as topoisomerase I poisons. Bioorganic and Medicinal Chemistry 8, 13711382.CrossRefGoogle Scholar
SIROVER, M. A. ( 1999). New insights into an old protein: the functional diversity of mammalian glyceraldehyde-3-phosphate dehydrogenase. Biochimica et Biophysica Acta 1432, 159184.CrossRefGoogle Scholar
STETLER, G. L., KING, G. J. & HUANG, W. M. ( 1979). T4 DNA-delay proteins, required for specific DNA replication, form a complex that has ATP-dependent DNA topoisomerase activity. Proceedings of the National Academy of Sciences, USA 76, 37373741.CrossRefGoogle Scholar
SUN, Q., GATTO, B., YU, C., LIU, A., LIU, L. F. & LAVOIE, E. J. ( 1994). Structure activity of topoisomerase I poisons related to Hoechst 33342. Bioorganic and Medicinal Chemistry Letters 4, 28712876.CrossRefGoogle Scholar
SUN, Q., GATTO, B., YU, C., LIU, A., LIU, L. F. & LAVOIE, E. J. ( 1995). Synthesis and evaluation of terbenzimidazoles as topoisomerase I inhibitors. Journal of Medicinal Chemistry 38, 36383644.CrossRefGoogle Scholar
TALAPATRA, S., WAGNER, J. D. & THOMPSON, C. B. ( 2002). Elongation factor-1 alpha is a selective regulator of growth factor withdrawal and ER stress-induced apoptosis. Cell Death and Differentiation 9, 856861.CrossRefGoogle Scholar
TOSH, K., CHEESMAN, S., HORROCKS, P. & KILBEY, B. ( 1999). Plasmodium falciparum: stage-related expression of topoisomerase I. Experimental Parasitology 91, 126132.CrossRefGoogle Scholar
VERDIER-PINARD, P., WANG, F., MARTELLO, L., BURD, B., ORR, G. A. & HORWITZ, S. B. ( 2003). Analysis of tubulin isotypes and mutations from taxol-resistant cells by combined isoelectrofocusing and mass spectrometry. Biochemistry 42, 53495357.CrossRefGoogle Scholar
VILLA, H., MARCOS, A., REGUERA, R., BALANA-FOUCE, R., GARCIA-ESTRADA, C., PEREZ-PERTEJO, Y., TEKWANI, B., MYLER, P., STUART, K., BJORNSTI, M. & ORDONEZ, D. ( 2003). A novel active DNA topoisomerase I in Leishmania donovani. Journal of Biological Chemistry 278, 35213526.CrossRefGoogle Scholar
WANG, J. C. ( 1985). DNA topoisomerases. Annual Review of Biochemistry 54, 665697.CrossRefGoogle Scholar
WANG, J. C. ( 1991). DNA topoisomerases: why so many? Journal of Biological Chemistry 266, 66596662.Google Scholar
WEGENER, G. & KRAUSE, U. ( 2002). Different modes of activating phosphofructokinase, a key regulatory enzyme of glycolysis, in working vertebrate muscle. Biochemical Society Transactions 30, 264270.CrossRefGoogle Scholar
WHITE, T. C., FASE-FOWLER, F., VAN LUENEN, H., CALAFAT, J. & BORST, P. ( 1988). The H circles of Leishmania tarentolae are a unique amplifiable system of oligomeric DNAs associated with drug resistance. Journal of Biological Chemistry 263, 1697716983.Google Scholar