Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-27T17:14:16.231Z Has data issue: false hasContentIssue false

Reduction of niridazole by metronidazole resistant and susceptible strains of Trichomonas vaginalis

Published online by Cambridge University Press:  06 April 2009

N. Yarlett
Affiliation:
Departments of Microbiology, University College, Newport Road, Cardiff CF2 1TA
C. C. Rowlands
Affiliation:
Departments of Chemistry, University College, Newport Road, Cardiff CF2 1TA
Nuriza C. Yarlett
Affiliation:
Departments of Microbiology, University College, Newport Road, Cardiff CF2 1TA
J. C. Evans
Affiliation:
Departments of Chemistry, University College, Newport Road, Cardiff CF2 1TA
D. Lloyd*
Affiliation:
Departments of Microbiology, University College, Newport Road, Cardiff CF2 1TA
*
All correspondence to Professor D. Lloyd.

Summary

The inhibitory effect of niridazole on hydrogen production by metronidazole-resistant (CDC-85) and susceptible (Cl-NIH) Trichomonas vaginalis strains was investigated. The results show that niridazole is more effective than metronidazole in inhibiting hydrogen production by the resistant isolate. In CDC-85 aerobic inhibition requires a 4-fold increase in metronidazole concentration compared with that required anaerobically, but the corresponding factor for niridazole is only 1·5-fold. Reduction of the drug by a hydrogenosome-enriched preparation gave rise to a multiline electron spin resonance detectable signal, which is due to a nitrogen-centred radical.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1987

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Čerkasov, J., Čerkasovová, A., Kulda, J. & Vilhelmová, D. (1978) Respiration of hydrogenosomes of Tritrichomonas foetus. I ADP dependent oxidation of malate and pyruvate. Journal of Biological Chemistry 253, 1207–14.CrossRefGoogle ScholarPubMed
Chapman, A. C., Cammack, R., Lindstead, D. & Lloyd, D. (1985). The generation of metronidazole radicals in hydrogenosomes isolated from Trichomonas vaginalis. Journal of General Microbiology 131, 2141–4.Google ScholarPubMed
Degn, H., Cox, R. P. & Lloyd, D. (1985). Continuous measurement of dissolved gases in biochemical systems with the quadrupole mass spectrometer. In Methods in Biochemical Analysis, vol. 31, (ed. Glick, D.), pp. 165–94. New York: Wiley Interscience.CrossRefGoogle Scholar
Diamond, L. S. (1957). The establishment of various trichomonads of animals and man in axenic cultures. Journal of Parasitology 43, 488–90.CrossRefGoogle ScholarPubMed
Hof, H. (1984). Nitrothiazole: Substanzen mit ausgeprägten antimikrobiellen Effeckt. Schwerpunkt der Medizin 7, 42–7.Google Scholar
Hof, H., Eisenbarth, B., Denzler, A., Zak, O. & Schweizer, E. (1985). Therapeutic activities of nitrothiazole derivatives in experimental infections with Salmonella typhimurium and Bacteroides fragilis. Journal of Antimicrobial Chemotherapy 16, 205–10.CrossRefGoogle ScholarPubMed
Hof, H. & Müller, K-M. (1982). Antibakterielle Wirkung von Niridazol. II. Wirkung auf aerobe und anaerobe Bakterien. Zentralblatt für Bakteriologie J. Abt 253, 265–71.Google Scholar
Hof, H. & Sticht-Groh, V. (1984). Antibacterial effects of niridazole: its effect on microaerophilic campylobacter. Infection 12, 36–9.CrossRefGoogle ScholarPubMed
Hof, H., Sticht-Groh, V. & Müller, K-M. (1982). Comparative in vivo activities of niridazole and metronidazole against anaerobic and microaerophilic bacteria. Antimicrobial Agents and Chemotherapy 22, 332–3.CrossRefGoogle Scholar
Hof, H., Zak, O., Schweizer, E. & Denzler, A. (1984). Antibacterial activities of nitrothiazole derivatives. Journal of Antimicrobial Chemotherapy 14, 31–9.CrossRefGoogle ScholarPubMed
Ings, R. M. J., McFadzean, J. A. & Omerod, W. E. (1974). The modes of action of metronidazole in Trichomonas vaginalis and other microorganisms. Biochemical Pharmacology 23, 1421–9.CrossRefGoogle Scholar
Jordon, P. (1986). Trial of Ambilhar – a nitrothiazole derivative – in S. mansoni infection in Tanzania. British Medical Journal 1, 276–8.CrossRefGoogle Scholar
Kradolfer, F., Jarumilinta, R. & Sackmann, W. (1969). The amoebicidal, trichomonicidal and antibacterial effects of niridazole in laboratory animals. Annals of the New York Academy of Sciences, USA 160, 740–8.CrossRefGoogle ScholarPubMed
Lloyd, D. & Kristensen, B. (1985). Metronidazole inhibition of hydrogen production in vivo in drug-sensitive and resistant strains of Trichomonas vaginalis. Journal of General Microbiology 131, 849–53.Google ScholarPubMed
Lloyd, D. & Pedersen, J. Z. (1985). Metronidazole radical anion generation in vivo in Trichomonas vaginalis: oxygen quenching is enhanced in a drug resistant strain. Journal of General Microbiology 131, 8792.Google Scholar
Lloyd, D. & Scott, R. I. (1983). Direct measurement of dissolved gases in microbiological systems using membrane inlet mass spectrometry. Journal of Microbiological Methods 1, 313–28.CrossRefGoogle Scholar
Lloyd, D., Yarlett, N. C. & Yarlett, N. C. (1986). Inhibition of H2 production in drug-resistant and susceptible Trichomonas vaginalis strains by a range of nitroimidazole derivatives. Biochemical Pharmacology 35, 61–5.CrossRefGoogle Scholar
Lundsgaard, J. S. & Degn, H. (1973). A digital gas mixer. IEEE Transactions of Biomedical Engineering 20, 384–7.CrossRefGoogle Scholar
Mahmoud, A. A. (1977). Schistosomiasis. New England Journal of Medicine 297, 1329–31.CrossRefGoogle ScholarPubMed
Moreno, S. N. J., Mason, R. P., Muniz, R. P. A., Cruz, F. S. & Docampo, R. (1983). Generation of free radicals from metronidazole and other nitroimidazoles by Tritrichomonas foetus. Journal of Biological Chemistry 258, 4051–4.CrossRefGoogle ScholarPubMed
Perez-Reyes, E., Kalyonaraman, B. & Mason, R. P. (1979). The reduction metabolism of metronidazole and ronidazole by aerobic liver microsomes. Biochemical Pharmacology 17, 239–44.Google Scholar
Seidell, A. (1940). Solubilities of Inorganic and Organic Compounds, vol. 1, New York: von Nostrand Co. Inc.Google Scholar
Wardman, P. & Clarke, E. D. (1976). Oxygen inhibition of nitroreductase: electron transfer from nitro-anions to oxygen. Biochemical and Biophysical Research Communications 69, 943–9.CrossRefGoogle ScholarPubMed
Watson, K. C. (1970). Salmonella typhimurium infection in mice treated with niridazole. Journal of Medical Microbiology 3, 361–5.CrossRefGoogle ScholarPubMed
Yarlett, N., Yarlett, N. C. & Lloyd, D. (1986). Ferredoxin-dependent reduction of nitroimidazole-derivatives in drug resistant and susceptible strains of Trichomonas vaginalis. Biochemical Pharmacology 35, 1703–8.CrossRefGoogle ScholarPubMed