Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2025-01-05T13:59:08.660Z Has data issue: false hasContentIssue false

Random amplified polymorphic DNA fingerprints of the eight taxa of Trichinella and their comparison with allozyme analysis

Published online by Cambridge University Press:  06 April 2009

C. Bandi
Affiliation:
Istituto di Patologia Generale Veterinaria, Università di Milano, via Celoria 10, 20133 Milano, Italy
G. la Rosa
Affiliation:
Laboratory of Parasitology, Istituto Superiore di Sanità, viale Regina Elena 299, 00161 Roma, Italy
M. G. Bardin
Affiliation:
IDVGA-CNR, via Celoria 10, 20133 Milano, Italy
G. Damiani
Affiliation:
IDVGA-CNR, via Celoria 10, 20133 Milano, Italy
S. Comincini
Affiliation:
IDVGA-CNR, via Celoria 10, 20133 Milano, Italy
L. Tasciotti
Affiliation:
Laboratory of Parasitology, Istituto Superiore di Sanità, viale Regina Elena 299, 00161 Roma, Italy
E. Pozio
Affiliation:
Laboratory of Parasitology, Istituto Superiore di Sanità, viale Regina Elena 299, 00161 Roma, Italy

Summary

Eight taxa have recently been proposed as being encompassed by the genus Trichinella on the basis of allozyme and biological data. In this paper we show that an analogous 8 taxon structure for this genus results from the random amplified polymorphic DNAs (RAPDs). Five 10-mer or 20-mer primers were used under different polymerase chain reaction (PCR) conditions to produce multiband RAPD fingerprints from muscle larvae of 40 isolates of Trichinella spp. The resulting RAPD data were analysed following the numerical taxonomic approach, and the resulting classification was compared to that derived from allozyme data. The agreement found between allozymes and RAPDs, while supporting the polyspecific structure of the genus Trichinella, confirms the potential of RAPDs as a tool for the detection of cryptic species. The selected primers were tested on individual muscle larvae in an attempt to standardize a RAPD assay for the routine identification of the 8 taxa of Trichinella. Only 1 of the 5 primers yielded reproducible fingerprints from the single larvae. Using this primer, the 5 species and the 3 other taxa of the genus Trichinella can be identified in a single assay without the need for massive in vivo parasite production.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Bandi, C., la Rosa, G., Comincini, S., Damiani, G. & Pozio, E. (1993). Random amplified polymorphic DNA technique for the identification of Trichinella species. Parasitology 107, 419–24.CrossRefGoogle ScholarPubMed
Castiglione, S., Wang, G., Damiani, G., Bandi, C., Bisoffi, S. & Sala, F. (1993). RAPD fingerprints for identification and for taxonomic studies of elite poplar (Populus spp.) clones. Theoretical and Applied Genetics 87, 54–9.CrossRefGoogle ScholarPubMed
Chalmers, K. J., Waugh, R., Sprent, J. I., Simons, A. J. & Powell, W. (1992). Detection of genetic variation between and within populations of Gliricidia septum and G. maculata using RAPD markers. Heredity 69, 465–72.CrossRefGoogle Scholar
Demeke, T., Adams, R. P. & Chibbar, R. (1992). Potential taxonomic use of random amplified polymorphic DNA (RAPD): a case study in Brassica. Theoretical and Applied Genetics 84, 990–4.CrossRefGoogle ScholarPubMed
Dupouy-Camet, J., Robert, F., Guillou, J. P., Vallet, C., Perret, C. & Soule, C. (1994). Identification of Trichinella isolates with random amplified polymorphic DNA markers. Parasitology Research 80, 358–60.CrossRefGoogle ScholarPubMed
Fani, R., Bandi, C., Bardin, M. G., Comincini, S., Damiani, G., Grifoni, A. & Bazzicalupo, M. (1993). RAPD fingerprinting is useful for identification of Azospirillum strains. Microbial Releases 1, 217–21.Google ScholarPubMed
Hadrys, H., Balick, M. & Schierwater, B. (1992).Applications of random amplified polymorphic DNA (RAPD) in molecular ecology. Molecular Ecology 1, 5563.CrossRefGoogle ScholarPubMed
Heun, M., Murphy, J. P. & Phillips, T. D. (1994). A comparison of RAPD and isozyme analyses for determining the genetic relationships among Avena sterilis L. accessions. Theoretical and Applied Genetics 87, 689–96.CrossRefGoogle ScholarPubMed
la Rosa, G., Pozio, E., Rossi, P. & Murrell, K. D. (1992). Allozyme analysis of Trichinella isolates from various host species and geographical regions. Journal of Parasitology 78, 641–6.CrossRefGoogle ScholarPubMed
Koller, B., Lehmann, A., McDermott, J. M. & Gessler, C. (1993). Identification of apple cultivars using RAPD markers. Theoretical and Applied Genetics 85, 901–4.CrossRefGoogle ScholarPubMed
Mantel, N. (1967). The detection of disease clustering and a generalized regression approach. Cancer Research 27, 209–20.Google Scholar
Morgan, U. M., Constantine, C. C., Greene, W. K. & Thompson, R. C. A. (1993). RAPD (random amplified polymorphic DNA) analysis of Giardia DNA and correlation with isoenzyme data. Transactions of the Royal Society of Tropical Medicine and Hygiene 87, 702–5.CrossRefGoogle ScholarPubMed
Nadler, S. A. (1990). Molecular approaches to studying helminth population genetics and phylogeny. International Journal for Parasitology 20, 1129.CrossRefGoogle ScholarPubMed
Penner, G. A., Bush, A., Wise, R., Kim, W., Domier, L., Kasha, K., Laroche, A., Scoles, G., Molnar, S. J. & Fedak, G. (1993). Reproducibility of random amplified polymorphic DNA (RAPD) among laboratories. PCR Methods and Applications 2, 341–5.CrossRefGoogle ScholarPubMed
Perring, T. M., Cooper, A. D., Russel, J., Rodriguez, R. J., Farrar, C. A. & Jr Bellows, T. S. (1993). Identification of a whitefly species by genomic and behavioral studies. Science 259, 74–7.CrossRefGoogle ScholarPubMed
Pozio, E. (1987). Isoenzymatic typing of 23 Trichinella isolates. Tropical Medicine and Parasitology 38, 111–16.Google ScholarPubMed
Pozio, E., la Rosa, G., Murrell, K. D. & Lichtenfels, J. R. (1992 a). Taxonomic revision of the genus Trichinella. Journal of Parasitology 78, 654–9.CrossRefGoogle ScholarPubMed
Pozio, E., la Rosa, G., Rossi, P. & Murrell, K. D. (1992 b). Biological characterization of Trichinella isolates from various host species and geographical regions. Journal of Parasitology 78, 647–53.CrossRefGoogle ScholarPubMed
Sambrook, J., Fritsch, E. F. & Maniatis, T. (1989). Molecular Cloning: a Laboratory Manual. New York: Cold Spring Harbor Laboratory Press.Google Scholar
Sneath, P. H. A. & Sokal, R. R. (1973). Numerical Taxonomy. San Francisco: Freeman.Google Scholar
Tibayrenc, M., Neubauer, K., Barnabé, C., Guerrini, F., Skarecky, D. & Ayala, F. J. (1993). Genetic characterization of six parasitic protozoa: Parity between random-primer DNA typing and multilocus enzyme electrophoresis. Proceedings of the National Academy of Sciences, USA 90, 1335–9.CrossRefGoogle ScholarPubMed
Tighe, P. J., Goyal, P. K., Wilson, Z. A., Wakelin, D. & Pritchard, D. I. (1994). Analysis of genetic variation in isolates of Trichinella using random amplified polymorphic DNA. Molecular and Biochemical Parasitology 63, 175–8.CrossRefGoogle ScholarPubMed
Welsh, J. & McClelland, M. (1990). Fingerprinting genomes using PCR with arbitrary primers. Nucleic Acids Research 18, 7213–18.CrossRefGoogle ScholarPubMed
Williams, J. G. K., Kubelik, A. R., Livak, K. J., Rafalski, J. A. & Tingey, S. V. (1990). DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Research 18, 6531–5.CrossRefGoogle ScholarPubMed
Van De Peer, Y. & De Wachter, R. (1993). Treecon: a software package for the construction and drawing of evolutionary trees. Computer Applications in the Biosciences 9, 177–82.Google ScholarPubMed