Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-26T01:08:35.691Z Has data issue: false hasContentIssue false

Questions in digenean systematics and evolution

Published online by Cambridge University Press:  06 April 2009

D. I. Gibson
Affiliation:
Department of Zoology, British Museum(Natural History), London SW7 5BD

Summary

Since the work of Dujardin (1845), attempts have been made to decipher acceptable divisions of the trematode groups at higher taxonomic levels, and yet there is still no generally accepted classification of the higher taxa of the Trematoda as there are for other groups of parasitic worms, such as the Monogenea, Cestoda, Nematoda and Acanthocephala. Why is it that workers with a wide knowledge of trematode systematics, such as Dollfus, Stunkard, Manter and especially Yamaguti, have felt unable or unwilling to comment in detail upon the phylogenetic relationships within the group at higher taxonomic levels? One of the main reasons for this state of affairs lies in the fact that, generally speaking, the group is not easily split into major subgroups by obvious, non-homoplasious morphological characters. Early attempts at division, based upon sucker arrangements, i.e. monostome, distome, amphistome and gasterostome, are not satisfactory, as distomes form the vast majority of the Digenea and both monostomes and amphistomes are certainly polyphyletic. In addition, the picture within the Digenea is complicated by the group's complex life-history patterns. Whereas early classifications all tended to be based upon adult (marital) morphology, life-history patterns are given great weight by workers such as Pearson (1972) and Bozhkov (1982). The cercarial morphology is considered the dominant feature in the classification of the group presented by La Rue (1957) and is emphasized in the phylogenetic relationships between the subgroups recognized by Cable (1974). Odening (1961), following an earlier suggestion of Lebour (1912), presented a classification, the major divisions of which were based upon the daughter-parthenita (i.e. the redia or daughter-sporocyst), a stance which he later found untenable (Odening, 1974). Consequently, the wealth of conflicting data from these and other sources has deterred the presentation both of classifications and speculations on evolutionary relationships. The classification of Odening (1974) and the recent cladistic analysis of Brooks, O'Grady & Glen (1985b) utilized data from all of the life-history stages. As the classification of Brooks et al. (1985b) is the most recent, and readily available in English, it must be a serious contender in terms of general acceptance. If it is accepted, then one would hope that this will be on its merits rather than because of its availability or the lack of viable alternatives; but, as discussed below, it is easy to find fault with this classification when it and its premises are examined in detail.

Type
Trends and Perspectives
Copyright
Copyright © Cambridge University Press 1987

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anderson, M. G. & Anderson, F. M. (1963). Life history of Proterometra dickermani Anderson, 1962. Journal of Parasitology 49, 275–80.CrossRefGoogle ScholarPubMed
Bayliss, H. A. (1938). Helminths and evolution. In Evolution Essays on Aspects of Evolutionary Biology presented to Professor E. S. Goodrich on his Seventieth Birthday (ed. De Beer, G. R.), pp. 249–70. Oxford: Clarendon Press.Google Scholar
Bayssade-Dufour, C. (1979). L'appareil sensoriel des cercaires et la systematique des trématodes digénétiques. Mémoires du Muséum National d'Histoire Naturelle, Ser. A, Zoologie 113, 181.Google Scholar
Bowers, E. A. & James, B. L. (1967). Studies on the morphology, ecology and life-cycle of Meiogymnophallus minutus (Cobbold, 1859) comb. nov. (Trematoda: Gymnophallidae). Parasitology 57, 281300.CrossRefGoogle ScholarPubMed
Bozhkov, D. K. (1982). [Helminth Life-cycles and their Evolution.](In Bulgarian.) Sofia: Durzhavno Izdatelstvo Nauka i Izkustvo.Google Scholar
Bray, R. A. (1986). Patterns in the evolution of marine helminths. In Parasitology–quo vadit?, Proceedings of the Sixth International Congress of Parasitology, Brisbane (ed. Howell, M. J.), pp. 337–44. Canberra: Australian Academy of Sciences.Google Scholar
Bray, R. A. (1987). A discussion of the status of the subfamily Baccigerinae Yamaguti, 1958 (Digenea) and the constitution of the family Fellodistomidae Nicoll, 1909. Systematic Parasitology (in the Press).Google Scholar
Bray, R. A. & Gibson, D. I. (1977). The Accacoeliidae (Digenea) of fishes of the north-east Atlantic. Bulletin of the British Museum (Natural History) (Zoology) 31, 5199.Google Scholar
Bray, R. A. & Gibson, D. I. (1980). The Fellodistomidae (Digenea) of fishes from the north-east Atlantic. Bulletin of the British Museum (Natural History) (Zoology) 37, 199293.Google Scholar
Brooks, D. R. (1982). Higher level classification of parasitic platyhelminths and fundamentals of cestode classification. In Parasites-their World and Ours, Proceedings of the Fifth International Congress of Parasitology, Toronto, 1982 (ed. Mettrick, D. F. and Desser, S. S.), pp. 189–93. Amsterdam: Elsevier Biomedical.Google Scholar
Brooks, D. R., O'Grady, R. T. & Glen, D. R. (1985 a). The phylogeny of the Cercomeria Brooks, 1982 (Platyhelminthes). Proceedings of the Helminthological Society of Washington 52, 120.Google Scholar
Brooks, D. R., O'Grady, R. T. & Glen, D. R. (1985 b). Phylogenetic analysis of the Digenea (Platyhelminthes: Cercomeria) with comments on their adaptive radiation. Canadian Journal of Zoology 63, 411–43.CrossRefGoogle Scholar
Cable, R. M. (1965). ‘Thereby hangs a tail’. Journal of Parasitology 51, 212.CrossRefGoogle ScholarPubMed
Cable, R. M. (1974). Phylogeny and taxonomy of trematodes with reference to marine species. In Symbiosis in the Sea (ed. Vernberg, W. B.), The Belle W. Baruch Library in Marine Science, no. 2, 173–93. Columbia, South Carolina: University of South Carolina Press.Google Scholar
Cable, R. M. (1977). An Illustrated Laboratory Manual of Parasitology. Minneapolis: Burgess.Google Scholar
Cable, R. M. & Crandall, R. B. (1956). Larval stages and phylogeny as exemplified by the lung fluke of turtles. Science 124, 890.CrossRefGoogle Scholar
Cannon, L. R. G. (1986). The Pterastericolidae: parasitic turbellarians from starfish. In Parasitic Lives. Papers on Parasites, their Hosts and their Associations, to Honour J. F. A. Sprent (ed. Cremin, M.et al.), pp. 1532. St Lucia, London and New York: University of Queensland Press.Google Scholar
Ching, H. L. (1982). Description of germinal sacs of a gymnophallid trematode Cercaria margaritensis sp. n., in the extrapallial fluid of subtidal snails (Margarites spp.) in British Columbia. Canadian Journal of Zoology 60, 516–20.CrossRefGoogle Scholar
Ciordia, H. (1956). Cytological studies of the germ cell cycle of the trematode family Bucephalidae. Transactions of the American Microscopical Society 75, 103–16.CrossRefGoogle Scholar
Clark, R. B. (1964). Dynamics in Metazoan Evolution. The Origins of the Coelom and Segments. Oxford: Clarendon Press.Google Scholar
Colbert, E. H. (1955). Evolution of the Vertebrates. New York: John Wiley.Google Scholar
Crandall, R. B. (1960). The life history and affinities of the turtle lung fluke, Heronimus chelydrae MacCallum, 1902. Journal of Parasitology 46, 289307.CrossRefGoogle ScholarPubMed
Cribb, T. H. (1987). Pseudophyllodistomum gen. nov. (Digenea, Gorgoderidae) from Australian and Asian freshwater fishes. Journal of Natural History (in the Press.)CrossRefGoogle Scholar
Cribb, T. H. & Pearson, J. C. (1986). Production of miracidia by cyathocotylid sporocysts and its implications for the evolution of the Digenea. ICOPA VI. Handbook Supplement. Abstract no. 759, p. 8.Google Scholar
Dawes, B. (1936). Sur un tendance probable dans l'evolution des trématodes digénétiques. Annales de Parasitologie humaine et comparée 14, 177–82.CrossRefGoogle Scholar
Dujardin, F. (1845). Histoire Naturelle des Helminthes ou vers Intestinaux. Paris: Libraire Encyclopédie de Roret.CrossRefGoogle Scholar
Ehlers, U. (1984). Phylogenetisches System der Plathelminthes. Verhandlungen des naturwissen-schaftlichen Vereins, Hamburg (NF) 27, 291–4.Google Scholar
Ehlers, U. (1985 a). Phylogenetic relationships within the Platyhelminthes. In The Origins and Relationships of the Lower Vertebrates, (ed. Conway, S. Morris), pp. 143–58. Oxford: Clarendon Press.Google Scholar
Ehlers, U. (1985 b) Das Phylogenetische System der Plathelminthes. Stuttgart: Gustav Fischer Verlag.Google Scholar
Fuhrmann, O. (1928). Zweite Klasse des Cladus Plathelminthes. Trematoda. In Handbuch der Zoologie, (ed. Kukenthal, W. and Krumbach, T.). Berlin and Leipzig: Walter de Gruyter.Google Scholar
Gibson, D. I. (1981). Evolution of digeneans. In Workshop on Evolution of Helminths. IV. European Multicolloquium of Parasitology. Parasitology 82, 161–3.Google Scholar
Gibson, D. I. (1983). The systematics of ascaridoid nematodes - a current assessment. In Concepts in Nematode Systematics, Systematics Association Special, Vol. 22, (ed. Stone, A. R.et al.), pp. 321–88. London and New York: Academic Press.Google Scholar
Gibson, D. I. & Bray, R. A. (1977). The Azygiidae, Hirudinellidae, Ptychogonimidae, Sclerodistomidae and Syncoeliidae (Digenea) of fishes from the north-east Atlantic. Bulletin of the British Museum (Natural History), (Zoology) 32, 167245.Google Scholar
Gibson, D. I. & Bkay, R. A. (1979). The Hemiuroidea: terminology, systematics and evolution. Bulletin of the British Museum (Natural History) (Zoology) 36, 35146.Google Scholar
Gibson, D. I. & Chinabut, S. (1984). Rohdella siamensis gen. nov., sp. nov. (Aspidogastridae: Rohdellinae subfam. nov.) from freshwater fishes in Thailand, with a reorganization of the Aspidogastrea. Parasitology 88, 383–93.CrossRefGoogle Scholar
Gibson, D. I. & Valtonen, E. T. (1984) How do the helminth parasites of fishes survive in the frozen north? Parasitology 89, xlix.Google Scholar
Gould, S. J. (1977). Ontogeny and Phytogeny. Cambridge, Mass: Harvard University Press.Google Scholar
Gu, C. & Shen, J. (1983). Digenetic trematodes of fishes from the Xisha Islands, Guandong Province, China, Studia Marina Sinica 20, 157–84 (In Chinese, with English summary.)Google Scholar
Guilford, H. G. (1958). Observations on the development of the miracidium and germ cell cycle in Heronimus chelydrae MacCallum (Trematoda). Journal of Parasitology 44, 6474.CrossRefGoogle ScholarPubMed
Hendelberg, J. (1986). The phylogenetic significance of sperm morphology in the Platyhelminthes. Hydrobiologia 132, 53–8.CrossRefGoogle Scholar
Howell, M. (1966). A contribution to the life history of Bucephalus longicornutus (Manter, 1954). Zoology Publications of Victoria University of Wellington 40, 142.Google Scholar
James, B. L. (1964). The life-cycle of Parvatrema homoeotecnum sp. nov. (Trematoda: Digenea) and a review of the family Gymnophallidae Morozov, 1955. Parasitology 54, 141.CrossRefGoogle Scholar
James, B. L. (1980). Studies on marine Digenea. D.Sc. thesis, University College, Swansea.Google Scholar
James, B. L. & Bowers, E. A. (1967). Reproduction in the daughter sporocysts of Cercaria bucephalopsis hairneana (Lacaze-Duthiers, 1854) (Bucephalidae) and Cercaria dichotoma Lebour, 1911 (non Müller) (Gymnophallidae). Parasitology 57, 607–25.CrossRefGoogle ScholarPubMed
Køie, M. (1985 a). On the morphology and life-history of Lepidapedon elongatum (Lebour, 1908) Nicoll, 1910 (Trematoda, Lepocreadiidae). Ophelia 24, 135–53.CrossRefGoogle Scholar
Køie, M. (1985 b). The Surface Topography and Life-cycles of Digenetic Trematodes in Limanda limanda (L.) and Gadus morhua L. Summary of Doctoral thesis, University of Copenhagen.Google Scholar
Kniskern, V. B. (1952). Studies on the trematode family Bucephalidae Poche, 1907. II. Transactions of the American Microscopical Society 71, 317–40.CrossRefGoogle Scholar
La Rue, G. R. (1957). The classification of digenetic Trematoda: a review and a new system. Experimental Parasitology 6, 306–19.CrossRefGoogle ScholarPubMed
Lebour, M. V. (1912). A review of the British marine cercariae. Parasitology 4, 416–56.CrossRefGoogle Scholar
Leuckart, R. (1879). Die Parasiten des Menschen und die von ihnen Herrührenden Krankheiten. Leipzig und Heidelberg: C. F. Winter'sche.Google Scholar
Le Zotte, L. A. Jr (1954). Studies on marine digenetic trematodes of Puerto Rico: the family Bivesiculidae, its biology and affinities. Journal of Parasitology 40, 148–62.CrossRefGoogle Scholar
Lynch, J. E. (1933). The miracidium of Heronimus chelydrae MacCallum. Quarterly Journal of the Microscopical Society 76, 1333.Google Scholar
MacCallum, G. A. (1921). Studies in helminthology. 1. Zoopathologica 1, 191–3.Google Scholar
MacCallum, W. G. (1902). Heronimus chelydrae nov. gen., nov. sp. A new monostome parasite of the American snapping turtle. Zentralblatt für Bakteriologie, Parasitenkunde, Infektionskrankheiten (und Hygiene) 33, 632–6.Google Scholar
Malmberg, G. (1986). The major parasitic platyhelminth classes–progressive and regressive evolution? Hydrobiologia 132, 23–9.CrossRefGoogle Scholar
Matthews, R. A. (1973). The life-cycle of Prosorhynchus crucibulum (Rudolphi, 1891) Odhner, 1905, and a comparison of its cercaria with that of Prosorynchus squamatus Odhner, 1905. Parasitology 66, 133–64.CrossRefGoogle Scholar
Nielsen, C. & Nørrevang, A. (1985). The trochaea theory: an example of life cycle phylogeny. In The Origins and Relationships of the Lower Invertebrates. The Systematic Association Special, vol. 28 (ed. Conway, S. Morris et al.), pp. 2841. Oxford: Clarendon Press.Google Scholar
Odening, K. (1961). Historische und moderne Gesichtspunkte beim Aufbau eines natürlichen Systems der digenetischen Trematoden. Biologische Beiträge 1, 7390.Google Scholar
Odening, K. (1974). Verwandtschaft, System und zyklo-ontogenetische Besonderheiten der Trematoden. Zoologischer Jahrbucher, Systematik. 101, 345–96. (Translation: Agence Tunisienne de Public-Relations, Tunis, 1977).Google Scholar
Odening, K. (1975). Nature and development of the parthenitae in the trematode genus Azygia. Proceedings of the Second European Multicolloquium of Parasitology, Trogir, pp. 111–18.Google Scholar
Odening, K. (1976). Der Lebenszyklus von Azygia lucii (Trematoda) - Untersuchungen im Gebiet der DDR. Biologisches Zentralblatt 95, 5794.Google Scholar
Odhner, T. (1905). Die Trematoden des arktischen Gebietes. Fauna Arctica 4, 289372.Google Scholar
O'Grady, R. T. (1985). Ontogenetic sequences and the phylogenetics of parasitic flatworm life cycles. Cladistics 1, 159–70.CrossRefGoogle ScholarPubMed
Ozaki, Y. (1937). Studies on the trematode families Gyliauchenidae and Opistholebetidae, with special reference to lymph system. II. Journal of Science of the Hiroshima University, Series B, Division 1 (Zoology) 5, 167244.Google Scholar
Padilha, T. N. (1978). Caracterizacao de familia Zonocotyle bicaecata Travassos, 1948 e descricao de un novo gênero (Trematoda, Digenea). Revista Brasileira de Biologia 38, 415–29.Google Scholar
Palombi, A. (1942). I ciclo biologico di Ptychogonimus megastoma (Rud.). Osservazioni sula morfologia e fisiologia delle forme larvali e considerazioni filogenetiche. Rivista di Parassitologia 6, 117–72.Google Scholar
Pearson, J. C. (1968). Observations on the morphology and life-cycle of Paucivitellosus fragilis Coil, Reid & Kuntz, 1965 (Trematoda Bivesiculidae). Parasitology 58, 760–88.CrossRefGoogle Scholar
Pearson, J. C. (1972). A phylogeny of life-cycle patterns of the Digenea. Advances in Parasitology 10, 153–89.CrossRefGoogle ScholarPubMed
Poche, F. (1926). Das System der Platodaria. Archiv für Naturgeschichte 1925, 1458.Google Scholar
Popiel, I. & James, B. L. (1978 a). Variations in the ultrastructure of the daughter sporocyst of Microphallus pygmaeus (Levinson, 1881) (Digenea: Microphallidae) in chemically defined media. Parasitology 76, 349–58.CrossRefGoogle Scholar
Popiel, I. & James, B. L. (1978 b). The ultrastructure of the tegument of the daughter sporocyst of Microphallus similis (Jäg., 1900) (Digenea: Microphallidae). Parasitology 76, 359–67.CrossRefGoogle Scholar
Premvati (1955). Cercaria multiplicata n. sp. from the snail Melanoides luberculatus (Müller). Journal of the Zoological Society of India 7, 1324.Google Scholar
Rohde, K. (1971). Phylogenetic origin of trematodes. Parasitologische Schriftenreihe 21, 1727.Google Scholar
Rohde, K. (1972). The Aspidogastrea, especially Multicotyle purvisi, Dawes, 1941. Advances in Parasitology 10, 77151.CrossRefGoogle Scholar
Rohde, K. & Watson, N. (1987). Ultrastructure of the protonephridial system of larval Austramphilina elongata (Platyhelminthes, Amphilinidea). Journal of Submicroscopical Cytology 19, (in the Press).Google ScholarPubMed
Rudolphi, C. A. (1801). Beobachtungen über die Eingeweidewürmer. Archiv für Zoologie und Zootomie 2, 165.Google Scholar
Sakaguchi, S. (1968). Studies on the life-history of the trematode parasitic in pearl oyster Pinctada fucata, and on the hindrance for pearl culture. Bulletin of the National Pearl Research Laboratory 13, 1635–88 (In Japanese, English summary.)Google Scholar
Sewell, R. B. S. (1922). Cercariae indicae. The Indian Journal of Medical Research 10, Suppl. 1370 + iii.Google Scholar
Shen, J. W. (1985). Digenetic trematodes of fishes from the Xisha Islands, III. (Larval forms). Sludia Marina Sinica 24, 181–8.Google Scholar
Sinitzin, D. F. (1911). [Parthenogenetic generation of trematodes and their progeny in molluscs of the Black Sea.] Zapiski Imperatorskoi Akademii Nauk po Fiziko-Matematicheskomu Otdeleniyu 30 (5), 1127 (In Russian, English translation in BM(NH) arranged by G. R. La Rue, University of Michigan, 1925.)Google Scholar
Sinitzin, D. F. (1931). Studien über die Phylogenie der Trematoden. IV. The life histories of Plagioporous siliculus and Plagioporus virens, with special reference to the origin of the Digenea. Zeitschrift für wissenschaftliche Zoologie 138, 409–56.Google Scholar
Skrjabin, K. I. (1947). [Family Bivesiculidae Yamaguti, 1938]. Osnovy Trematodologii 1, 4653. (In Russian.)Google Scholar
Skrjabin, K. I. & Gushanskaja, L. Kh. (1962). [Order Bucephalidida (Odening, 1960) Skrjabin & Guschanskaja, 1962.] Osnovy Trematodologii 20, 165559. (In Russian.)Google Scholar
Sluys, R. (1984). The meaning and implications of genealogical tree diagrams. Zeitschrift für zoologische Systematik und Evolutionsforschung 22, 18.CrossRefGoogle Scholar
Smith, J. III & Tyler, S. (1985). The acoel turbellarians: kingpins of metazoan evolution or a specialized offshoot. In The Origin and Relationships of Lower Invertebrates. The Systematic Association Special, vol. 28, (ed. S., Conway Morriset al.), pp. 123–42. Oxford: Clarendon Press.Google Scholar
Sprent, J. F. A. (1983). Observations on the systematics of ascaridoid nematodes. In Concepts in Nematode Systematics, Systematics Association Special, vol. 22, (ed. Stone, A. R.et al.), pp. 303–19. London and New York: Academic Press.Google Scholar
Stunkard, H. W. (1946). Inter-relationships and taxonomy of the digenetic trematodes. Biological Reviews 21, 148–58.CrossRefGoogle Scholar
Stunkard, H. W. (1956). The morphology and life-history of the digenetic trematode, Azygia sebago Ward, 1910. Biological Bulletin, Marine Biological Laboratory, Woods Hole, Mass. 111, 248–68.CrossRefGoogle Scholar
Tennent, D. H. (1906). A study of the life history of Bucephalus haimeanus; a parasite of the oyster. Quarterly Journal of Microscopical Science 49, 635–90.Google Scholar
Tennent, D. H. (1909). Account of experiments for determining the complex life cycle of Gasterostomum gradlescens. Science 29, 432–3.Google Scholar
Thulin, J. (1981). On the morphology and early development of the marine fish blood-fluke Aporocotyle simplex Odhner, 1900 (Digenea: Sanguinicolidae). Ph.D. thesis, University of Göteborg.Google Scholar
Ulmer, M. J. & Sommer, S. C. (1957). Development of sporocysts in the turtle lung fluke, Heronimus chelydrae MacCallum (Trematoda: Heronimidae). Proceedings of the Iowa Academy of Science 64, 601–13.Google Scholar
Valtonen, E. T., Gibson, D. T. & Kurttila, M. (1984). Trematodes in northern Finland. I. Species maturing in fish in the northeastern Bothnian Bay and in a local lake. Bothnian Bay Reports 3, 3143.Google Scholar
Waterman, T. H. (1961) Light sensitivity and vision. In The Physiology of the Crustacea, vol. 2. Sense Organs, Integration, and Behaviour (ed. Waterman, T. H.), pp. 164. London and New York: Academic Press.Google Scholar
Woodhead, A. E. (1931). The germ-cell cycle in the trematode family Bucephalidae. Transactions of the American Microscopical Society 50, 169–87.CrossRefGoogle Scholar
Wright, C. A. & Southgate, V. S. (1981). Coevolution of digeneans and molluscs, with special reference to schistosomes and their intermediate hosts. In The Evolving Biosphere, (ed. Forey, P. L.), pp. 191205. British Museum (Natural History). Cambridge: Cambridge University Press.Google Scholar
Yamaguti, S. (1934). Studies on the helminth fauna of Japan. 2. Trematodes of fishes I. Japanese Journal of Zoology 5, 249541.Google Scholar
Yamaguti, S. (1970). The Digenetic Trematodes of Hawaiian Fishes. Tokyo: Keigaku.Google Scholar
Yamaguti, S. (1971). Synopsis of Digenetic Trematodes of Vertebrates. Tokyo: Keigaku.Google Scholar
Yochelson, E. L. (1979). Early radiation of Mollusca and mollusc-like groups. In The Origin of Major Invertebrate Groups, Systematics Association, Special vol. 12, (ed. House, M. R.), pp. 325–58. London and New York: Academic Press.Google Scholar