Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-23T12:22:42.027Z Has data issue: false hasContentIssue false

Quantitative and qualitative change in production of excretions/secretions by Litomosoides carinii during development in the jird (Meriones unguiculatus)

Published online by Cambridge University Press:  06 April 2009

W. Harnett
Affiliation:
Divisions of Parasitology, National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 1AA
M. Meghji
Affiliation:
Divisions of Parasitology, National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 1AA
M. J. Worms
Affiliation:
Divisions of Parasitology, National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 1AA
R. M. E. Parkhouse
Affiliation:
Divisions of Immunology, National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 1AA

Summary

Excretions and secretions (E–S) were collected from a series of developmental stages of Litomosoides carinii maintained in vitro. Measurement of the protein content of E–S obtained from each stage indicates that the rate of production of E–S varies enormously during development of the worm. E–S was iodinated using both Iodogen and the Bolton and Hunter Reagent and was also biosynthetically labelled by incubating worms in the presence of [35S]methionine and [3H]leucine. Attempts to biosynthetically label E–S of mature worms and microfilariae with [3H]glucose were unsuccessful. Examination of radio-isotope labelled E–S by SDS–PAGE revealed that some components were sex specific and that the differences in total E–S production during development were due to the existence of both stage-specific components and components whose rate of release varied during parasite maturation. Antigenic characterization of E–S, carried out by immunoprecipitation in combination with SDS–PAGE, indicated that E–S consists of immunogenic components, a molecule which is probably a non-immunogenic parasite product, and host albumin. The implications of these findings for the construction of diagnostic tests to detect products of human filarial parasites are discussed.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1986

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bolton, A. E. & Hunter, W. M. (1984). The labelling of proteins to high specific radioactivities by conjugation to a 125I containing acylating agent. The Biochemical Journal 133, 529–39.CrossRefGoogle Scholar
Chamberlain, J. P. (1979). Fluorographic detection of radioactivity in polyacrylamide gels, with the water soluble fluor, sodium salicylate. Analytical Biochemistry 98, 132–5.CrossRefGoogle ScholarPubMed
Chandrashekar, R., Rao, U. R., Rajasekariah, G. R. & Subrahmanyam, D. (1984). Separation of viable microfilariae free of blood cells on Percoll gradients. Journal of Helminthology 58, 6970.CrossRefGoogle ScholarPubMed
Court, J. P. & Storey, D. M. (1981). Shared antigens between Litomosoides carinii and its hosts Sigmodon hispidus and Mastomys natalensis. Tropenmedizin und Parasitologie 32, 161–4.Google ScholarPubMed
Des Moutis, I., Ouaissi, A., Grzych, J. M., Yarzabal, L., Haque, A. & Capron, A. (1983). Onchocerca volvulus: detection of circulating antigen by monoclonal antibodies in human onchocerciasis. American Journal of Tropical Medicine and Hygiene 32, 533–42.CrossRefGoogle ScholarPubMed
Dissanayake, S., Forsyth, K. P., Ismail, M. M. & Mitchell, G. F. (1984). Detection of circulating antigen in Bancroftian filariasis by using a monoclonal antibody. American Journal of Tropical Medicine and Hygiene 33, 1130–40.CrossRefGoogle ScholarPubMed
Forsyth, K. P., Copeman, D. B. & Mitchell, G. F. (1984). Differences in the surface radioiodinated proteins of skin and uterine microfilariae of Onchocercagibsoni. Molecular and Biochemical Parasitology 10, 217–29.CrossRefGoogle Scholar
Forsyth, K. P., Spark, R., Kazura, J., Brown, G. V., Peters, P., Heywood, P., Dissanayake, S. & Mitchell, G. F. (1985). A monoclonal antibody based immunoradiometric assay for detection of circulating antigen in bancroftian filariasis. Journal of Immunology 134, 1172–7.CrossRefGoogle ScholarPubMed
Hawking, F. & Sewell, P. (1948). The maintenance of a filarial infection Litomosoides carinii for chemotherapeutic investigation. British Journal of Pharmacology 3, 285–96.Google Scholar
Kaushal, N. A., Hussain, R., Nash, T. E. & Ottesen, E. A. (1982). Identification and characterization of excretory-secretory products of Brugia malayi, adult filarial parasites. Journal of Immunology 129, 338–43.CrossRefGoogle ScholarPubMed
Labos, E. & Weiss, N. (1985). Immunochemical comparison between worm extracts of Onchocerca volvulus from savanna and rain forest. Parasite Immunology 7, 333–47.CrossRefGoogle Scholar
Laskey, R. A. & Mills, A. D. (1977). Enhanced autoradiographic detection of 32P and 125I using intensifying screens and hypersensitised films. FEBS Letters 82, 314–16.CrossRefGoogle Scholar
Lowry, O. H., Rosebrough, N. J., Farr, A. L. & Randall, R. J. (1951). Protein measurement with the Folin phenol reagent. Journal of Biological Chemistry 193, 265–75.CrossRefGoogle ScholarPubMed
Maizels, R. M., de Savigny, D. & Ogilvie, B. M. (1984). Characterization of surface and excretory-secretory antigens of Toxocara canis infective larvae. Parasite Immunology 6, 2337.CrossRefGoogle ScholarPubMed
Maizels, R. M., Philipp, M., Dasgupta, A. & Partono, F. (1984). Human serum albumin is a major component on the surface of microfilariae of Wuchereria bancrofti. Parasite Immunology 6, 185–90.CrossRefGoogle Scholar
Malhotra, A. & Harinath, B. C. (1984). Detection and monitoring of microfilarial ES antigen levels by inhibition ELISA during DEC therapy. Indian Journal of Medical Research 79, 194–8.Google ScholarPubMed
Marcoullis, G. & Grasbeck, R. (1976). Preliminary identification and characterisation of antigen extracts from Onchocerca volvulus. Tropenmedizin und Parasitologie 27, 314–22.Google ScholarPubMed
Ouaissi, A., Kouemeni, L-E., Haque, A., Ridel, P-R., Saint Andre, P. & Capron, A. (1981). Detection of circulating antigens in onchocerciasis. American Journal of Tropical Medicine and Hygiene 30, 1211–18.CrossRefGoogle ScholarPubMed
Owen, M. J., Barber, B. H., Faulkes, R. A. & Crumpton, M. J. (1980). Albumin associated with purified pig lymphocyte plasma membrane. The Biochemical Journal 192, 4957.CrossRefGoogle ScholarPubMed
Parkhouse, R. M. E., Clark, N. W. T., Maizels, R. M. & Denham, D. A. (1985). Brugia pahangi: labelling of secreted antigens with 35S-methionine in vitro. Parasite Immunology 7, 665–8.CrossRefGoogle ScholarPubMed
Parkhouse, R. M. E., Philipp, M. & Ogilvie, B. M. (1981). Characterization of surface antigens of Trichinella spiralis infective larvae (1981). Parasite Immunology 3, 339–52.CrossRefGoogle Scholar
Philipp, M., Worms, M. J., Maizels, R. M. & Ogilvie, B. M. (1984). Rodent models of filariasis. Contemporary Topics in Immunobiology 12, 275321.Google ScholarPubMed
Philipp, M., Worms, M. J., Mclaren, D. J., Ogilvie, B. M., Parkhouse, R. M. & Taylor, P. M. (1984). Surface proteins of a filarial nematode: a major soluble antigen and a host component on the cuticle of Litomosoides carinii. Parasite Immunology 6, 6382.CrossRefGoogle Scholar
Reddy, M. V. R., Malhotra, A. & Harinath, B.C. (1984). Detection of circulating antigen in bancroftian filariasis by sandwich ELISA using filarial serum IgG. Journal of Helminthology 58, 259–62.CrossRefGoogle ScholarPubMed
Tamoshiro, K. G., Powers, D. A., Levy, D. A. & Scott, A. L. (1985). Quantitative and qualitative changes in the humoral response of dogs through the course of infection with Dirofilaria immitis. American Journal of Tropical Medicine and Hygiene 34, 292301.CrossRefGoogle Scholar