Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2025-01-03T15:34:17.894Z Has data issue: false hasContentIssue false

QTL mapping of a natural genetic polymorphism for long-term parasite persistence in Daphnia populations

Published online by Cambridge University Press:  24 August 2017

MICHELLE KREBS
Affiliation:
Zoological Institute, Basel University, Vesalgasse 1, Basel, Switzerland
JARKKO ROUTTU
Affiliation:
Zoological Institute, Basel University, Vesalgasse 1, Basel, Switzerland Molecular Ecology, Martin-Luther-Universität, Halle-Wittenberg, Germany
DIETER EBERT*
Affiliation:
Zoological Institute, Basel University, Vesalgasse 1, Basel, Switzerland
*
*Corresponding author: Zoological Institute, Basel University, Vesalgasse 1, Basel, Switzerland. E-mail: [email protected]

Summary

Knowing the determinants of the geographic ranges of parasites is important for understanding their evolutionary ecology, epidemiology and their potential to expand their range. Here we explore the determinants of geographic range in the peculiar case of a parasite species – the microsporidian Hamiltosporidium tvaerminnensis – that has a limited geographic distribution in a wide-spread host – Daphnia magna. We conducted a quantitative trait loci (QTLs) analysis with monoclonal F2D. magna populations originating from a cross between a susceptible northern European genotype and a resistant central European genotype. Contrary to our expectations, long-term persistence turned out to be a quantitative trait across the F2 offspring. Evidence for two QTLs, one epistatic interaction and for further minor QTL was found. This finding contrasts markedly with the previously described bimodal pattern for long-term parasite persistence in natural host genotypes across Europe and leaves open the question of how a quantitative genetic trait could determine the disjunct geographic distribution of the parasite across Europe.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Agampodi, S. B. and Wickramage, K. (2013). Is there a risk of yellow fever virus transmission in South Asian countries with hyperendemic dengue? BioMed Research International 2013, 905043.CrossRefGoogle Scholar
Antonovics, J., Boots, M., Ebert, D., Koskella, B., Poss, M. and Sadd, B. M. (2013). The origin of specificity by means of natural selection: evolved and nonhost resistance in host–pathogen interactions. Evolution 67, 19.CrossRefGoogle ScholarPubMed
Atlija, M., Arranz, J. J., Martinez-Valladares, M. and Gutierrez-Gil, B. (2015). Detection and replication of QTL underlying resistance to gastrointestinal nematodes in adult sheep using the ovine 50 K SNP array. Genetics Selection Evolution 48, 4.Google Scholar
Behrens, D., Huang, Q., Gessner, C., Rosenkranz, P., Frey, E., Locke, B., Moritz, R. F. A. and Kraus, F. B. (2011). Three QTL in the honey bee Apis mellifera L. suppress reproduction of the parasitic mite Varroa destructor . Ecology and Evolution 1, 451458.Google Scholar
Ben-Ami, F., Mouton, L. and Ebert, D. (2008). The effects of multiple infections on the expression and evolution of virulence in a Daphnia–endoparasite system. Evolution 62, 17001711.CrossRefGoogle Scholar
Bento, G., Routtu, J., Fields, P. D., Bourgeois, Y., Du Pasquier, L. and Ebert, D. (2017). The genetic basis of resistance and matching-allele interactions of a host–parasite system: the Daphnia magnaPasteuria ramosa model. PLoS Genetics 13, e1006596.CrossRefGoogle ScholarPubMed
Bieger, A. and Ebert, D. (2009). Expression of parasite virulence at different host population densities under natural conditions. Oecologia (Berlin) 160, 247255.Google Scholar
Broman, K. W. and Sen, Ś. (2009). A Guide to QTL Mapping with R/qtl. Springer, New York.Google Scholar
Broman, K. W., Wu, H., Sen, S. and Churchill, G. A. (2003). R/qtl: QTL mapping in experimental crosses. Bioinformatics 19, 889890.CrossRefGoogle ScholarPubMed
Combes, C. (2001). Parasitism: the Ecology and Evolution of Intimate Interactions. 552 pp. University of Chicago Press.Google Scholar
Corradi, N., Haag, K. L., Pombert, J. F., Ebert, D. and Keeling, P. J. (2009). Draft genome sequence of the Daphnia pathogen Octosporea bayeri: insights into the gene content of a large microsporidian genome and a model for host–parasite interactions. Genome Biology 10, R106.Google Scholar
Culleton, R. L., Mita, T., Ndounga, M., Unger, H., Cravo, P. V. L., Paganotti, G. M., Takahashi, N., Kaneko, A., Eto, H., Tinto, H., Karema, C., D'Alessandro, U., do Rosário, V., Kobayakawa, T., Ntoumi, F., Carter, R. and Tanabe, K. (2008). Failure to detect Plasmodium vivax in West and Central Africa by PCR species typing. Malaria Journal 7, 174.Google Scholar
De Gelas, K. and De Meester, L. (2005). Phylogeography of Daphnia magna in Europe. Molecular Ecology 14, 753764.Google Scholar
Dobson, A., Molnar, P. K. and Kutz, S. (2015). Climate change and Arctic parasites. Trends in Parasitology 31, 181188.CrossRefGoogle ScholarPubMed
Ebert, D. (2008). Host–parasite coevolution: insights from the Daphnia–parasite model system. Current Opinion in Microbiology 11, 290301.Google Scholar
Ebert, D. (2013). The epidemiology and evolution of symbionts with mixed-mode transmission. Annual Review of Ecology, Evolution, and Systematics 44, 623643.Google Scholar
Ebert, D., Hottinger, J. W. and Pajunen, V. I. (2001). Temporal and spatial dynamics of parasites in a Daphnia metapopulation: which factors explain parasite richness? Ecology 82, 34173434.Google Scholar
Ebert, D., Altermatt, F. and Lass, S. (2007). A short term benefit for outcrossing in a Daphnia metapopulation in relation to parasitism. Journal of the Royal Society Interface 4, 777785.Google Scholar
Falconer, D. S. and MacKay, T. F. C. (1996). Introduction to Quantitative Genetics, 4th Edn. Longman, Harlow, UK.Google Scholar
Feenstra, B., Skovgaard, L. A. and Broman, K. W. (2006). Mapping quantitative trait loci by an extension of the Haley–Knott regression method using estimating equations. Genetics 173, 22692282.CrossRefGoogle ScholarPubMed
Fields, P. D., Reisser, C., Dukic, M., Haag, C. R. and Ebert, D. (2015). Genes mirror geography in Daphnia magna . Molecular Ecology 24, 45214536.Google Scholar
Gagne, R. B., Hogan, J. D., Pracheil, B. M., Mcintyre, P. B., Hain, E. F., Gilliam, J. F. and Blum, M. J. (2015). Spread of an introduced parasite across the Hawaiian archipelago independent of its introduced host. Freshwater Biology 60, 311322.CrossRefGoogle Scholar
Goren, L. and Ben-Ami, F. (2013). Ecological correlates between cladocerans and their endoparasites from permanent and rain pools: patterns in community composition and diversity. Hydrobiologia 701, 1323.Google Scholar
Guerra, C. a., Howes, R. E., Patil, A. P., Gething, P. W., Van Boeckel, T. P., Temperley, W. H., Kabaria, C. W., Tatem, A. J., Manh, B. H., Elyazar, I. R. F., Baird, J. K., Snow, R. W. and Hay, S. I. (2010). The international limits and population at risk of Plasmodium vivax transmission in 2009. PLoS Neglected Tropical Diseases 4, e774.CrossRefGoogle ScholarPubMed
Haag, K. L., Larsson, J. I. R., Refardt, D. and Ebert, D. (2011). Cytological and molecular description of Hamiltosporidium tvaerminnensis gen. et sp nov., a microsporidian parasite of Daphnia magna, and establishment of Hamiltosporidium magnivora comb. nov. Parasitology 138, 447462.Google Scholar
Haag, K. L., Sheikh-Jabbari, E., Ben-Ami, F. and Ebert, D. (2013 a). Microsatellite and single-nucleotide polymorphisms indicate recurrent transitions to asexuality in a microsporidian parasite. Journal of evolutionary Biology 26, 11171128.Google Scholar
Haag, K. L., Traunecker, E. and Ebert, D. (2013 b). Single-nucleotide polymorphisms of two closely related microsporidian parasites suggest a clonal population expansion after the last glaciation. Molecular Ecology 22, 314326.CrossRefGoogle ScholarPubMed
Haley, C. S. and Knott, S. A. (1992). A simple regression method for mapping quantitative trait loci in line crosses using flanking markers. Heredity 69, 315324.CrossRefGoogle ScholarPubMed
Henning, J. A., Gent, D. H., Twomey, M. C., Townsend, M. S., Pitra, N. J. and Matthews, P. D. (2015). Precision QTL mapping of downy mildew resistance in hop (Humulus lupulus L.). Euphytica 202, 487498.Google Scholar
Huang, Q., Kryger, P., Le Conte, Y., Lattorff, H. M. G., Kraus, F. B. and Moritz, R. F. A. (2014). Four quantitative trait loci associated with low Nosema ceranae (Microsporidia) spore load in the honeybee Apis mellifera . Apidologie 45, 248256.CrossRefGoogle Scholar
Huyse, T., Poulin, R. and Theron, A. (2005). Speciation in parasites: a population genetics approach. Trends in Parasitology 21, 469475.Google Scholar
Klüttgen, B., Dülmer, U., Engels, M. and Ratte, H. T. (1994). ADaM, an artificial freshwater for the culture of zooplankton. Water Research 28, 743746.Google Scholar
Kraaijeveld, A. R. and Godfray, H. C. J. (1997). Tradeoff between parasitoid resistance and larval competitive ability in Drosophila melanogaster . Nature 389, 278280.Google Scholar
Lange, B., Kaufmann, A. P. and Ebert, D. (2015). Genetic, ecological and geographic covariables explaining host range and specificity of a microsporidian parasite. Journal of Animal Ecology 84, 17111719.Google Scholar
Lass, S. and Ebert, D. (2006). Apparent seasonality of parasite dynamics: analysis of cyclic prevalence patterns. Proceedings of the Royal Society of London B: Biological Sciences 273, 199206.Google Scholar
Lass, S., Hottinger, J. W., Fabbro, T. and Ebert, D. (2011). Converging seasonal prevalence dynamics in experimental epidemics. BMC Ecology 11, 14.CrossRefGoogle ScholarPubMed
McKean, K. a., Yourth, C. P., Lazzaro, B. P. and Clark, A. G. (2008). The evolutionary costs of immunological maintenance and deployment. BMC Evolutionary Biology 8, 76.Google Scholar
Poulin, R. (2007). Evolutionary Ecology of Parasites. Princeton University Press, Princeton, USA.Google Scholar
Poulin, R. and Keeney, D. B. (2008). Host specificity under molecular and experimental scrutiny. Trends in Parasitology 24, 2428.Google Scholar
R Development Core Team (2008). R: a Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org.Google Scholar
Refardt, D. and Ebert, D. (2007). Inference of parasite local adaptation using two different fitness components. Journal of evolutionary Biology 20, 921929.Google Scholar
Rogers, D. J., Wilson, A. J., Hay, S. I. and Graham, A. J. (2006). Global mapping of infectious diseases: methods, examples and emerging applications. Advances in Parasitology 62, 181220.CrossRefGoogle Scholar
Roulin, A. C., Routtu, J., Hall, M. D., Janicke, T., Colson, I., Haag, C. R. and Ebert, D. (2013). Local adaptation of sex induction in a facultative sexual crustacean: insights from QTL mapping and natural populations of Daphnia magna . Molecular Ecology 22, 35673579.Google Scholar
Roulin, A. C., Bourgeois, Y., Stiefel, U., Walser, J. C. and Ebert, D. (2016). A photoreceptor contributes to the natural variation of diapause induction in Daphnia magna . Molecular Biology and Evolution 33, 31943204.Google Scholar
Routtu, J. and Ebert, D. (2015). Genetic architecture of resistance in Daphnia hosts against two species of host-specific parasites. Heredity 114, 241248.Google Scholar
Routtu, J., Jansen, B., Colson, I., De Meester, L. and Ebert, D. (2010). The first-generation Daphnia magna linkage map. Bmc Genomics 11, 508.CrossRefGoogle ScholarPubMed
Routtu, J., Hall, M. D., Albere, B., Beisel, C., Bergeron, R. D., Chaturvedi, A., Choi, J. H., Colbourne, J., De Meester, L., Stephens, M. T., Stelzer, C. P., Solorzano, E., Thomas, W. K., Pfrender, M. E. and Ebert, D. (2014). An SNP-based second-generation genetic map of Daphnia magna and its application to QTL analysis of phenotypic traits. BMC Genomics 15, 1033.Google Scholar
Ryan, S. J., McNally, A., Johnson, L. R., Mordecai, E. A., Ben-Horin, T., Paaijmans, K. and Lafferty, K. D. (2015). Mapping physiological suitability limits for malaria in Africa under climate change. Vector-Borne and Zoonotic Diseases 15, 718725.CrossRefGoogle ScholarPubMed
Schmid-Hempel, P. (2011). Evolutionary Parasitology. Oxford University Press, Oxford, UK.Google Scholar
Vizoso, D. B. and Ebert, D. (2005). Mixed inoculations of a microsporidian parasite with horizontal and vertical infections. Oecologia (Berlin) 143, 157166.Google Scholar
Vizoso, D. B., Lass, S. and Ebert, D. (2005). Different mechanisms of transmission of the microsporidium Octosporea bayeri: a cocktail of solutions for the problem of parasite permanence. Parasitology 130, 501509.Google Scholar
Wolfe, N. D., Switzer, W. M., Carr, J. K., Bhullar, V. B., Shanmugam, V., Tamoufe, U., Prosser, A. T., Torimiro, J. N., Wright, A., Mpoudi-ngole, E., Mccutchan, F. E., Birx, D. L., Folks, T. M., Burke, D. S. and Heneine, W. (2004). Naturally acquired simian retrovirus infections in central African hunters. The Lancet 363, 932937.Google Scholar
Woolhouse, M. E. and Antia, R. (2008). Emergence of new diseases. In Evolution in Health and Disease, 2nd Edn (ed. Stearns, S. C. and Koella, J. K.), pp. 215228. Oxford University Press, Oxford, UK.Google Scholar
Zbinden, M., Haag, C. R. and Ebert, D. (2008). Experimental evolution of field populations of Daphnia magna in response to parasite treatment. Journal of Evolutionary Biology 21, 1088–1078.Google Scholar
Supplementary material: File

Krebs et al supplementary material

Krebs et al supplementary material 1

Download Krebs et al supplementary material(File)
File 74.2 KB