Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-22T20:19:22.906Z Has data issue: false hasContentIssue false

A putative Leishmania panamensis/Leishmania braziliensis hybrid is a causative agent of human cutaneous leishmaniasis in Nicaragua

Published online by Cambridge University Press:  06 April 2009

A. A. Belli
Affiliation:
Department of Medical Parasitology, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, UK
M. A. Miles
Affiliation:
Department of Medical Parasitology, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, UK
J. M. Kelly
Affiliation:
Department of Medical Parasitology, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, UK

Summary

As part of a survey of human leishmaniasis in Nicaragua we examined phenotypic and genotypic characteristics of 40 Leishmania isolates. We identified 3 distinct parasites associated with cutaneous disease in this area; Leishmania panamensis (40% of cases), Leishmania braziliensis (33%), and a strain which exhibits the heterozygous isoenzyme and DNA fingerprinting patterns expected of a L. panamensis/L. braziliensis hybrid (27%). There was complete correlation between the isoenzyme and DNA data for each of the putative hybrids examined. All of the ‘hybrids’ were obtained from foci in the northern region of the country where L. panamensis and L. braziliensis occur sympatrically. These observations provide strong evidence for sexual reproduction in New World Leishmania populations and suggest that it is of taxonomic and epidemiological significance.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Bastien, P., Blaineau, C. & Pagès, M. (1992). Leishmania: sex, lies and karyotype, Parasitology Today 8, 174–7.CrossRefGoogle ScholarPubMed
Button, L. L. & McMaster, W. R. (1988). Molecular cloning of the major surface antigen of Leishimania. Journal of Experimental Medicine 167, 724–9.CrossRefGoogle Scholar
Button, L. L., Russel, D. G., Klein, H. L., Medina-Acosta, E., Karess, R. E. & McMaster, W. R. (1989). Genes encoding the major surface glycoprotein in Leishimania are tandemly linked at a single chromosomal locus and are constitutively transcribed. Molecular and Biochemical Parasitology 32, 271–84.CrossRefGoogle Scholar
Cruz, A. K., Titus, R. & Beverley, S. M. (1993). Plasticity in chromosome number and testing of essential genes in Leishmania by targetting. Proceedings of the National Academy of Sciences, USA 90, 1599–603.CrossRefGoogle Scholar
Darce, M., Moran, J., Palacios, X., Belli, A., Gomez-Urcuyo, F., Zamora, D., Valle, S., Gantier, J. C., Momen, H. & Grimaldi, G. (1991). Etiology of human cutaneous leishmaniasis in Nicaragua. Transactions of the Royal Society of Tropical Medicine and Hygiene 85, 58–9.CrossRefGoogle ScholarPubMed
Desjeux, P. (1991). Information on the epidemiology and control of the Leishmaniases by country or territory. WHO/LEISH/91.30: World Health Organization Report.Google Scholar
Evans, D. A. (1989). Handbook on Isolation, Characterization and Cryopreservation of Leishmania. UNDP/World Bank/WHO Special Programme for Research and Training in Tropical Diseases (TDR), Geneva.Google Scholar
Evans, D. A., Kennedy, W. P. K., Elbihari, S., Chapman, C. J., Smith, V. & Peters, W. (1987). Hybrid formation within the genus Leishmania? Parasitologia 29, 165–73.Google ScholarPubMed
Howard, M. K., Pharoah, M. M., Ashall, F. & Miles, M. A. (1991). Human urine stimulates growth of Leishimania in vitro. Transactions of the Royal Society of Tropical Medicine and Hygiene 85, 477–9.CrossRefGoogle Scholar
Jeremiah, S. J., Povey, S. & Miles, M. A. (1982). Molecular size of enzymes in Trypanosoma cruzi considered in relationship to the genetic interpretation of isoenzyme patterns. Molecular and Biochemical Parasitology 6, 297302.CrossRefGoogle Scholar
Kelly, J. M., Law, J. M., Chapman, C. J., Van Eys, G. J. J. M. & Evans, D. A. (1991). Evidence of genetic recombination in Leishmania. Molecular and Biochemical Parasitology 46, 253–64.CrossRefGoogle ScholarPubMed
Kelly, J. M. (1993). Isolation of DNA and RNA from Leishmania. In Protocols in Molecular Parasitology (ed. Hyde, J. E.), pp. 123132. New Jersey, USA: Humana Press.CrossRefGoogle Scholar
Lanotte, G. & Rioux, J. A. (1990). Fusion cellulaire chez les Leishmania (Kinetoplastida, Trypanosomatidae). Comptes Rendus Hebdomonedaires des Seances de l' Academie des Sciences, Paris (Serie III) 310, 285–8.Google ScholarPubMed
Maazoun, R., Lanotte, G., Rioux, J. A., Pasteur, N., Killick-Kendrick, R. & Pratlong, F. (1981). Signification due polymorphisme enzymatique chez les leishmanies. Annales de Parasitologie Humaine Comparée 56, 467–75.CrossRefGoogle Scholar
MacFarlane, J., Blaxter, M. L., Bishop, R. P., Miles, M. A. & Kelly, J. M. (1990). Identification and characterization of a Leishmania donovani antigen belonging to the 70 kDa heat shock protein family. European Journal of Biochemistry 190, 377–84.CrossRefGoogle Scholar
Miles, M. A. (1983). The epidemiology of South American Trypanosomiasis – biochemical and immunological approaches and their relevance to control. Transactions of the Royal Society of Tropical Medicine and Hygiene 77, 523.CrossRefGoogle ScholarPubMed
Missoni, E. & Morrelli, R. (1984). Survey of 259 cases of American cutaneous leishmaniasis in Nicaragua. International Journal of Dermatology 21, 414–16.Google Scholar
Missoni, E., Morelli, R., Balladares, L., Berrios, J., De Solan, M. D., Baldwin, C. I. & Evans, D. A. (1986). Isolation and characterization of leishmaniasis from Nicaragua. Transactions of the Royal Society of Tropical Medicine and Hygiene 80, 9991000.CrossRefGoogle Scholar
Pagés, M., Bastien, P., Veas, F., Rossi, V., Bellis, M., Wincker, P., Rioux, J.-A. & Roizes, G. (1989). Chromosome size and number polymorphisms in Leishmania infantum suggest amplification/deletion and possible genetic exchange. Molecular and Biochemical Parasitology 36, 161–8.CrossRefGoogle ScholarPubMed
Panton, L. J., Tesh, R. B., Nadeau, K. C. & Beverley, S. M. (1991). A test for genetic exchange in mixed infections of Leishmania major in the sandfly Phlebotomus papatasi. Journal of Protozoology 38, 224–8.CrossRefGoogle Scholar
Peters, W., Elbihari, S., Liu, C., le Blancq, S. M., Evans, D. A., Killick-Kendrick, R., Smith, V. & Baldwin, C. I. (1985). Leishmania infecting man and wild animals in Saudi Arabia. 1. General Survey. Transactions of the Royal Society of Tropical Medicine and Hygiene 79, 831–9.CrossRefGoogle ScholarPubMed
Sambrook, J., Fritsch, E. F. & Maniatis, T. (1989). Molecular Cloning. A Laboratory Manual. Cold Spring Harbor, NY, USA: Cold Spring Harbor Laboratory.Google Scholar
Taylor, M. C., Kelly, J. M., Chapman, C. J., Fairlamb, A. H. & Miles, M. A. (1994). The structure, organization and expression of the Leishmania donovani gene encoding trypanothione reductase. Molecular and Biochemical Parasitology 64, 293301.CrossRefGoogle ScholarPubMed
Thomaz Soccol, V. (1993). Les Leishmania du Nouveau Monde. Analyse enzymatique. Demarche progressive phenetique-cladistique. Relations phylogenetiques avec les Leishmania de l'Ancien Monde. Ph.D. thesis, Faculté de Medecine, Université de Montpellier, France.Google Scholar
Tibayrenc, M. (1992). Leishmania: sex, karyotypes and population genetics. Parasitology Today 8, 305–6.CrossRefGoogle ScholarPubMed
Tibayrenc, M., Kjellberg, F. & Ayala, F. J. (1990). A clonal theory of parasitic protozoa: The population structures of Entamoeba, Giardia, Leishmania, Naegleria, Plasmodium, Trichomonas and Trypanosoma and their medical and taxonomical consequences. Proceedings of the National Academy of Sciences, USA 87, 2414–18.CrossRefGoogle ScholarPubMed
Widmer, G., Dvorak, J. A. & Miles, M. A. (1986). A biochemical comparison of glucosephosphate isomerase isoenzymes from Trypanosoma cruzi. Biochimica et Biophysica Acta 873, 119–26.CrossRefGoogle ScholarPubMed