Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-27T17:15:23.744Z Has data issue: false hasContentIssue false

The protozoa occurring in the hind-gut of cockroaches. I. Responses to changes in environment

Published online by Cambridge University Press:  06 April 2009

H. M. D. Hoyte
Affiliation:
Molteno Institute, University of Cambridge*

Extract

Records of non-sporozoan Protozoa occurring in the hind-gut of cockroaches are summarized.

The Protozoa studied were the three flagellates Lophomonas striata, L. blattarum, Monocercomonoides orthopterorum; the rhizopod Endamoeba blattae, and the ciliate Nyctotherus ovalis, in the cockroaches Periplaneta americana, P. australasiae, Blatta orientalis, Blattella germanica and Blaberus giganteus.

Specimens of Blatta and Periplaneta americana were maintained at 37° and 25°C. under extreme conditions of humidity. Maximum humidity enabled the host, and the Nyctotherus which it harboured to survive for a longer time. The results of the experiments indicated that the well-being of the protozoan parasites is closely linked to that of the host.

Periplaneta americana, Blatta, Blatella and Blaberus were subjected to pure oxygen at 3½ atmospheres pressure and the effect on the Protozoa observed. The flagellates were killed first, then Endamoeba and lastly Nyctotherus. They survived in Blatta for a longer time than in Periplaneta; and Nyctotherus in Blaberus and Blattella sometimes survived the hosts. The hosts appeared to act as a barrier against poisoning by oxygen, and the strength of the barrier varied in the different species of cockroaches.

Nymphal Periplaneta or Blatta which were about to moult underwent a period of self-starvation which lasted for up to 10 days. The period was terminated by the moult: at this time, the little food that was in the gut was very dry. All species of Protozoa could survive these conditions, but Nyctotherus seemed to be the most hardy. The main mass of ciliates seemed to be nearer to the anus than in the non-moulting cockroach. Many of the ciliates were often clumped together into a ‘raspberry’. The bodies of the individual ciliates were more spherical than usual, but those in the ‘raspberry’ were moulded into polygonal shapes. The macronucleus underwent a change in form which revealed that its basic structure is that of a folded sheet.

The changes were reversed within 24 hr. They could not be induced by experimentally imposed conditions of starvation or dehydration of the hind-gut. The changes in Nyctotherus ovalis are contrasted with the sexual stages occurring in N. cordiformis and in the Protozoa of Cryptocercus.

This work was done during the tenure of a Research Studentship awarded by the Agricultural Research Council. I am deeply indebted to Dr P. Tate for his encouragement and counsel at all stages of the work. I wish to thank Drs J. Barker and E. R. Turner, of the Cambridge University Botany School, for the loan of the apparatus used in subjecting cockroaches to oxygen under pressure, and Mr A. C. Bloy, of the Zoology Department, for gifts of cockroaches. I am most grateful to Mrs E. F. M. Hawkins and Mr B. H. Baker for technical assistance.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1961

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Aragão, H. de B. (1912). Noticia sobre o Nyctotherus cordiformis Stein. Mem. Inst. Oswaldo Cruz, 4, 125–9.CrossRefGoogle Scholar
Armer, J. M. (1944). Influence of the diet of Blattidae on some of their intestinal Protozoa. J. Parasit. 30, 131–42.CrossRefGoogle Scholar
Bělař, K. (1916). Protozoenstudien. II. Arch. Protistenk. 36, 241302.Google Scholar
Bieniarz, J. (1950). Influence of vertebrate gonadotropic hormones upon the reproductive cycle of certain Protozoa in frogs. Nature, Lond., 165, 650–1.CrossRefGoogle ScholarPubMed
Bishop, A. (1927). The effect of increased and decreased oxygen pressure upon the intestinal Protozoa of Macacus rhesus, Parasitology, 19, 410–4.CrossRefGoogle Scholar
Bishop, A. (1931). A description of Embadomonas n.spp. from Blatta orientalis, Rana temporaria, Bufo vulgaris, Salamandra maculosa; with a note upon the ‘cyst’ of Trichomonas batrachorum. Parasitology, 23, 286300.CrossRefGoogle Scholar
Bojewa-Petruschewskaja, T. P. (1933). Zum Entwicklungszyklus von Nyctotherus cordiformis. Trav. Soc. nat. Leningrade, 62, 341–5.Google Scholar
Bütschli, O. (1878). Beiträge zur Kenntniss der Flagellaten und einiger verwandten Organismen. Z. wiss. Zool. 30, 205–81.Google Scholar
Buxton, P. A. (1931). The measurement and control of atmospheric humidity in relation to entomological problems. Bull. Ent. Res. 22, 431–47.CrossRefGoogle Scholar
Čehović, G. (1956). Recherches expérimentales sur la corrélation hormonale entre le cycle saisonnier de la grenouille et celui de ses parasites. C.R. Acad. Sci., Paris, 242, 2176–8.Google Scholar
Cleveland, L. R. (1924). The physiological and symbiotic relationship between the intestinal Protozoa of termites and their host, with special reference to Reticulitermes flaviceps Kollar. Biol. Bull., Woods Hole, 46, 177225.CrossRefGoogle Scholar
Cleveland, L. R. (1925 a). The effects of oxygenation and starvation on the symbiosis between the termite, Termopsis, and its intestinal flagellates. Biol. Bull., Woods Hole, 48, 309–26.CrossRefGoogle Scholar
Cleveland, L. R. (1925 b). Toxicity of oxygen for Protozoa in vivo and in vitro: animals defaunated without injury. Biol. Bull., Woods Hole, 48, 455–68.CrossRefGoogle Scholar
Cleveland, L. R. (1949). Hormone-induced sexual cycles of flagellates. I. Gametogenesis, fertilization, and meiosis in Trichonympha. J. Morph. 85, 197296.CrossRefGoogle ScholarPubMed
Cleveland, L. R. (1950 a). Hormone-induced sexual cycles of flagellates. II. Gametogenesis, fertilization, and one-division meiosis in Oxymonas. J. Morph. 86, 185214.CrossRefGoogle Scholar
Cleveland, L. R. (1950 b). Hormone-induced sexual cycles of flagellates. III. Gametogenesis, fertilization and one-division meiosis in Saccinobaculus. J. Morph. 86, 215–28.CrossRefGoogle Scholar
Cleveland, L. R. (1950 c). Hormone-induced sexual cycles of flagellates. IV. Meiosis after syngamy and before nuclear fusion in Notila. J. Morph. 87, 317–48.CrossRefGoogle ScholarPubMed
Cleveland, L. R. (1950 d). Hormone-induced sexual cycles of flagellates. V. Fertilization in Eucomonympha. J. Morph. 87, 349–68.CrossRefGoogle ScholarPubMed
Cleveland, L. R. (1951 a). Hormone-induced sexual cycles of flagellates. VI. Gametogenesis, fertilization, meiosis, oöcysts and gametocysts in Leptospironympha. J. Morph. 88, 199244.CrossRefGoogle ScholarPubMed
Cleveland, L. R. (1951 b). Hormone-induced sexual cycles of flagellates. VII. One-division meiosis and autogamy without cell division in Urinympha. J. Morph. 88, 385440.CrossRefGoogle Scholar
Cleveland, L. R. (1952). Hormone-induced sexual cycles of flagellates. VIII. Meiosis in Rhynchonympha in one cytoplasmic and two nuclear divisions followed by autogamy. J. Morph. 91, 269324.CrossRefGoogle Scholar
Cleveland, L. R. (1953). Hormone-induced sexual cycles of flagellates. IX. Haploid gametogenesis and fertilization in Barbulanympha. J. Morph. 93, 371404.CrossRefGoogle Scholar
Cleveland, L. R. (1954 a). Hormone-induced sexual cycles of flagellates. X. Autogamy and endomitosis in Barbulanympha resulting from interruption of haploid gametogenesis. J. Morph. 95, 189212.CrossRefGoogle Scholar
Cleveland, L. R. (1954 b). Hormone-induced sexual cycles of flagellates. XI. Reorganization in the zygote of Barbulanympha without nuclear or cytoplasmic division. J. Morph. 95, 213236.CrossRefGoogle Scholar
Cleveland, L. R. (1954 c). Hormone-induced sexual cycles of flagellates. XII. Meiosis in Barbulanympha following fertilization, autogamy and endomitosis. J. Morph. 95, 577619.Google Scholar
Cleveland, L. R. (1955). Hormone-induced sexual cycles of flagellates. XIII. Unusual behaviour of gametes and centrioles of Barbulanympha. J. Morph. 97, 511–42.CrossRefGoogle Scholar
Cleveland, L. R. (1956). Hormone-induced sexual cycles of flagellates. XIV. Gametic meiosis and fertilization in Macrospironympha. Arch. Protistenk. 101, 99169.Google Scholar
Cleveland, L. R. (1957). Correlation between the moulting period of Cryptocercus and sexuality in its Protozoa. J. Protozool. 4, 168–75.CrossRefGoogle Scholar
Cleveland, L. R. (1959). Sex induced with ecdysone. Proc. nat. Acad. Sci., Wash., 45, 747–53.CrossRefGoogle ScholarPubMed
Cleveland, L. R. & Burke, A. W. Jr. (1956). Effects of temperature and tension of oxygen toxicity for the Protozoa of Cryptocercus. J. Protozool. 3, 74–7.CrossRefGoogle Scholar
Cleveland, L. R., Burke, A. W. Jr. & Karlson, P. (1960). Ecdysone induced modifications in the sexual cycles of the protozoa of Cryptocercus. J. Protozool. 7, 229–39.CrossRefGoogle Scholar
Ellenby, C. (1956). Arresting Paramecium. Nature, Lond. 177, 98.CrossRefGoogle Scholar
Epstein, H. W. (1941). [Parasitic amoebae.] State Med. Publ. Moscow-Leningrad. 1941.Google Scholar
Ghosh, E. (1922 a). On a new ciliate, Balantidium blattarum sp.nov., an intestinal parasite in the common cockroach (Blatta americana). Parasitology, 14, 1516.CrossRefGoogle Scholar
Ghose, E. (1922 b). On a new ciliate, Balantidium ovatum sp.nov. an intestinal parasite in the common cockroach (Blatta americana). Parasitology, 14, 371.CrossRefGoogle Scholar
Grassé, P.-P. (1952). (editor). Traité de Zoologie. Anatomie, Systematique, Biologie. I. 1. Phylogénie. Protozoaires: Généralités. Flagellés. Paris: Mason et Cie.Google Scholar
Grassé, P.-P. (1953). (editor). Traité de Zoologie. Anatomie, Systematique, Biologie. I. 2. Protozoaires: Rhizopodes, Actinopodes, Sporozoaires, Cnidosporidies. Paris: Masson et Cie.Google Scholar
Gunn, D. L. (1935). The temperature and humidity relations of the cockroach. III. A. comparison of temperature preference, and rates of desiccation and respiration of Periplaneta americana, Blatta orientalis and Blattella germanica. J. Exp. Biol. 12, 185–90.CrossRefGoogle Scholar
Higgins, H. T. (1929). Variations in the Nyctotherus (Protozoa, Ciliata) found in frog and toad tadpoles and adults. Trans. Amer. Micr. Soc. 48, 141–57.CrossRefGoogle Scholar
Hincks, W. D. (1949). Dermaptera and Orthoptera. Vol. I, pt. 5 of Handbooks for the identification of British insects. London: Roy. Ent. Soc. Lond.Google Scholar
Ivanić, M. (1937). Körperbau, Ernährung und Vermehrung einer in Enddarme der Küchensehabe [Blatta (Periplaneta, Stylopyga) orientalis L.] lebenden Hartmanella—Art (Hartmanella blattae spec.nov.). Arch. Protistenk, 88, 339–52.Google Scholar
Kidder, G. (1937). The intestinal Protozoa of the wood-feeding roach (Panesthia). Parasitology, 29, 163205.CrossRefGoogle Scholar
Kudo, R. (1926). A cytological study of Lophomonas striata Bütschli. Arch. Protistenk. 55, 504–15.Google Scholar
Kudo, R. (1946). Protozoology, 3rd ed. Springfield, Illinois, U.S.A.: C. C. Thomas.Google Scholar
Kudo, R. & Meglitsch, P. A. (1938). On Balantidium praenucleatum n.sp., inhabiting the colon of Blatta orientalis. Arch. Protistenk. 91, 111–24.Google Scholar
Laser, H. (1944). The oxidative metabolism of Ascaris suis. Biochem. J. 38, 333–8.CrossRefGoogle ScholarPubMed
Laveran, A. & Franchini, G. (1920). Contribution à l'étude des Flagellés des Culicides, des Muscides, des Phlebotomes et de la Blatte Orientale. Bull. Soc. Pat. exot. 13, 138–47.Google Scholar
Leidy, J. (1850). Two new species of infusorial Entozoa. Proc. Acad. nat. Sci. 5, 100.Google Scholar
Leidy, J. (1879). On Amoeba blattae. Proc. Acad. nat. Sci. 31, 204–5.Google Scholar
Lucas, C. L. T. (1927). Two new species of Amoeba found in Cockroaches: with notes on the cysts of Nyctotherus ovalis Leidy. Parasitology, 19, 223–35.CrossRefGoogle Scholar
Lucas, C. L. T. (1928). A study of excystation in Nyctotherus ovalis, with notes on other intestinal Protozoa of the cockroach. J. Parasit. 14, 161175.CrossRefGoogle Scholar
McAdow, C. M. (1931). Observations on some Protozoa parasitic in cockroaches. M.A. Thesis, Ohio State University, MS. [not seen: quoted by Semens (1943 b)].Google Scholar
Meglitsch, P. A. (1940). Cytological observations on Endamoeba blattae. Illinois biol. Monogr. 17 (4), 146 pp.Google Scholar
Necheles, H. (1924). Über Wärmeregulation bei wechselwarmen Tieren. Ein Beitrag zur vergleichenden Physiologie der Wärmeregulation. Arch. ges. Physiol. 204, 7286.CrossRefGoogle Scholar
Pai, K.-T. & Wang, C.-C. (1948). The variation of Nyctotherus ovalis Leidy and its fibrillar system. Sinensia, 18, 4358.Google Scholar
Parisi, B., (1910). Su alcuni flagellati endoparassiti. Arch. Protistenk. 19, 232–8.Google Scholar
Schuster, E. H. J. (1898). On a new Flagellate Protozoon of the genus Lophomonas. Proc. zool. Soc. Lond. (1898), 242–4.CrossRefGoogle Scholar
Semans, F. M. (1943 a). Protozoan parasites of the Orthoptera, with special reference to those of Ohio. IV. Classified list of the protozoan parasites of the Orthoptera of the World. Classes Mastigophora, Sarcodina & Sporozoa. Ohio. J. Sci. 43, 221–34.Google Scholar
Semans, F. M. (1943 b). Protozoan parasites of the Orthoptera, with special reference to those of Ohio. IV. Classified list of the protozoan parasites of the Orthoptera of the World. Classes Mastigophora, Sarcodina & Sporozoa (continued). Ohio J. Sci. 43, 271–6.Google Scholar
von Siebold, C. T. (1839). Beiträge zur Naturgeschichte der wirbellosen Thiere. Neuste Schr. Naturf. Ges. Danzig. 3, 94 pp.Google Scholar
Stadie, W. C., Riggs, B. C. & Haugaard, N. (1944). Oxygen poisoning. Amer. J. Med. Sci. 207, 84114.CrossRefGoogle Scholar
Stein, F. (1854). Die Infusionsthiere auf ihre Entwickelungsgeschichte untersucht. Leipzig.CrossRefGoogle Scholar
Stein, F. (1860). Über die bisher unbekannt gebliebene Leucophrys patula Ehbg. und über zwei neue Infusioriengattungen Gyrocorys und Lophomonas. Abh. Bohmisch. Ges. Wiss. 1860(1), 44–50. [Not seen: referred to by Bütschli (1878), Wegner (1884) and Semans (1943b). I have assumed that Wegner's version of the reference is the correct one.]Google Scholar
Stein, F. (1859, 1867, 1878). Der Organismus der Infusionsthiere, 3 vols. Leipzig.Google Scholar
Steinhaus, E. A. (1946). Insect Microbiology. An Account of the Microbes Associated with Insects and Ticks with Special Reference to the Biological Relationship Involved. Ithaca, New York: Comstock Publ. Co. Inc.Google Scholar
Tejera, E. (1926). Les blattes envisagées comme agents de dissemination des germes pathogènes. C.R. Soc. Biol., Paris, 95, 1382–4.Google Scholar
Travis, B. V. (1932). A discussion of synonymy in the nomenclature of certain insect flagellates, with the description of a new flagellate from the larvae of Ligyrodes relictus Say (Coleoptera-Scarabaeidae). Iowa State Coll., J. Sci. 6, 317–23.Google Scholar
Wegner, G. (1884). Generalregister zu den Schriften der königl. böhm. Gesellschaft der Wissenschaften 1784–1884. Prague.Google Scholar
Weill, R. (1929). Notes protistologiques indichinoises (première série). 1. Observation sur la Symbiose entre Noctiluques et Algues vertes. 2. La présence d'un Infusoire du genre Isotricha (I. caulleryi n. sp.) chez un Insecte (Periplaneta americana Forbes) et sa signification possible. 3. Observation sur la morphologie nucléaire de Opalina Chattoni n.sp. Arch. Zool. exp. gen. 69, 1237.Google Scholar
Wenrich, D. H. (1932). The relation of the protozoan flagellate Retortomonas gryllotalpae (Grassi, 1879) Stiles, 1902 to the species of the genus Embadomonas Mackinnon, 1911. Trans. Amer. Micr. Soc. 51, 225–38.CrossRefGoogle Scholar
Wenyon, C. M. (1926). Protozoology. A manual for medical men, veterinarians and zoologists. London: Baillière, Tindal and Cox.CrossRefGoogle Scholar
Wichterhman, R. (1937). Division and conjugation in Nyctotherus cordiformis (Ehr.) Stein (Protozoa, Ciliata) with special reference to the nuclear phenomena. J. Morph. 60, 563611.CrossRefGoogle Scholar
Wollman, E. (1926). Observations sur une lignée aseptique de Blattes (Blattella germanica) datant de cinqu ans. C.R. Soc. Biol., Paris, 95, 164–5.Google Scholar
Young, M. D. (1935). Description, incidence and cultivation of Tetratrichomastix blattidarum, n.sp. from the cockroach. J. Parasit. 21, 309–10.CrossRefGoogle Scholar