Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-27T17:11:33.824Z Has data issue: false hasContentIssue false

Proteophosphoglycan is differentially expressed in sodium stibogluconate-sensitive and resistant Indian clinical isolates of Leishmania donovani

Published online by Cambridge University Press:  16 March 2007

M. SAMANT
Affiliation:
Divisions of ParasitologyCentral Drug Research Institute, Lucknow, India
A. A. SAHASRABUDDHE
Affiliation:
Molecular and Structural Biology, Central Drug Research Institute, Lucknow, India
N. SINGH
Affiliation:
Divisions of ParasitologyCentral Drug Research Institute, Lucknow, India
S. K. GUPTA
Affiliation:
Divisions of ParasitologyCentral Drug Research Institute, Lucknow, India
S. SUNDAR
Affiliation:
Department of Medicine, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
A. DUBE*
Affiliation:
Divisions of ParasitologyCentral Drug Research Institute, Lucknow, India
*
*Corresponding author: Division of Parasitology, Central Drug Research Institute, P.B. No. 173, Lucknow-226 001, India. Tel: +91 0522 2612411 18 Ext. 4398. Fax: +91 0522 2623938, 2623405. E-mail: [email protected], [email protected]

Summary

Leishmania produce several types of mucin-like glycoproteins called proteophosphoglycans (PPGs) some of which are secreted while others are found on the surface of promastigotes and amastigotes. These proteins are thought to be important in the transmission, invasion and subsequent intracellular survival of parasites. The structure and function of PPGs are species and stage-specific in the case of L. major and L. mexicana, but no such information has hitherto been available for L. donovani. This study presents, for the first time, an initial characterization (localization) of PPG in sodium stibogluconate (SSG)-resistant and sensitive clinical isolates of L. donovani from Bihar (India) by confocal microscopy, flow cytometry and Western blotting using antibodies to L. major PPG. Confocal microscopy analysis revealed that both promastigotes and amastigotes possess PPG on their cell membrane and flagellar pocket membrane but its expression was variable in different isolates. The quantitative analysis by FACS and Western blotting showed that the expression and intensity of PPG bands was higher in SSG-resistant isolates. This study suggests the possibilities of involvement of PPG in drug-resistant mechanisms and of using PPG abundance as a marker for identifying drug-resistant clinical isolates in Indian kala azar.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Croft, S. L., Sundar, S. and Fairlamb, A. H. (2006). Drug resistance in leishmaniasis Clinical Microbiology Reviews 19, 111126.CrossRefGoogle ScholarPubMed
Dube, A., Singh, N., Sundar, S. and Singh, N. (2005). Refractoriness to the treatment of sodium stibogluconate in Indian kala-azar field isolates persists in in vitro and in vivo experimental models. Parasitology Research 96, 216223.CrossRefGoogle Scholar
Foth, B., Piani, A., Curtis, J. M., Ilg, T., McConville, M. and Handman, E. (2002). Leishmania major proteophosphoglycans exist as membrane-bound and soluble forms and localise to the cell membrane, the flagellar pocket and the lysosome. International Journal for Parasitology 32, 17011708.CrossRefGoogle Scholar
Gopfert, U., Goehring, N., Klein, C. and Ilg, T. (1999). Proteophosphoglycans of Leishmania mexicana, Molecular cloning and characterization of the Leishmania mexicana PPG2 gene encoding the proteophosphoglycans aPPG and pPPG2 that are secreted by amastigotes and promastigotes. The Biochemical Journal 344, 787795.CrossRefGoogle Scholar
Guerin, P. J., Olliaro, P., Sundar, S., Boelaert, M., Croft, S. L., Desjeux, P., Wasunna, M. K. and Bryceson, A. D. M. (2002). Visceral leishmaniasis: current status of control, diagnosis, and treatment, and a proposed research and development agenda. Lancet Infectious Diseases 2, 494501.CrossRefGoogle Scholar
Ilg, T. (2000). Proteophosphoglycans of Leishmania. Parasitology Today 16, 489497.CrossRefGoogle ScholarPubMed
Ilg, T., Craik, D., Currie, G., Multhaup, G. and Bacic, A. (1998). Stage-specific proteophosphoglycan from Leishmania mexicana amastigotes. Journal of Biological Chemistry 273, 1350913523.CrossRefGoogle ScholarPubMed
Ilg, T., Handman, E. and Stierhof, Y. D. (1999 a). Proteophosphoglycans from Leishmania promastigotes and amastigotes. Biochemical Society Transactions 27, 518525.Google ScholarPubMed
Ilg, T., Handman, E., Ng, K., Stierhof, Y. D. and Bacic, A. (1999 b). Mucin-like proteophosphoglycans from the protozoan parasite Leishmania. Trends in Glycoscience and Glycotechnology 11, 119.CrossRefGoogle Scholar
Ilg, T., Stierhof, Y. D., McConville, M. J. and Overath, P. (1995). Purification, partial characterization and Immunolocalization of a proteophosphoglycan secreted by Leishmania mexicana amastigotes. European Journal of Cell Biology 66, 205215.Google ScholarPubMed
Ilg, T., Stierhof, Y. D., Craik, D., Simpson, R., Handman, E. and Bacic, A. (1996) Purification and structural characterization of a filamentous, mucin-like proteophosphoglycan secreted by Leishmania parasites. Journal of Biological Chemistry 271, 2158321596.CrossRefGoogle ScholarPubMed
Ilgoutz, S. C. and McConville, M. J. (2001) Function and assembly of the Leishmania surface coat. International Journal for Parasitology 31, 899908.CrossRefGoogle ScholarPubMed
Kedzierski, L., Montgomery, J., Bullen, D., Curtis, J., Gardiner, E., Jimenez-Ruiz, A. and Handman, E. (2004). A leucine-rich repeat motif of Leishmania parasite surface antigen 2 binds to macrophages through the complement receptor 3. Journal of Immunology 172, 49024906.CrossRefGoogle ScholarPubMed
Klein, C., Gopfert, U., Goehring, N., Stierhof, Y. D. and Ilg, T. (1999). Proteophosphoglycans of Leishmania mexicana. Identification, purification, structural and ultra structural characterization of the secreted promastigote proteophosphoglycan pPPG2, a stage-specific glycoisoform of amastigote aPPG. The Biochemical Journal 344, 775786.CrossRefGoogle Scholar
Kothari, H., Kumar, P., Sundar, S. and Singh, N. (2007). Possibility of membrane modification as a mechanism of antimony resistance in Leishmania. donovani. Parasitology International (in the Press) [Epub ahead of print] PMID: 17169604.CrossRefGoogle ScholarPubMed
Laemmli, U. K. (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, London 227, 680685.Google ScholarPubMed
McConville, M. J. and Ferguson, M. A. J. (1993). The structure, biosynthesis and function of glycosylated-phosphatidylinositols in the parasitic protozoa and higher eukaryotes. The Biochemical Journal 294, 305324.CrossRefGoogle ScholarPubMed
Mengeling, B. J., Beverley, S. M. and Turco, S. J. (1997). Designing glycoconjugate biosynthesis for an insidious intent: phosphoglycan assembly in Leishmania parasites. Glycobiology 7, 873880.CrossRefGoogle ScholarPubMed
Montgomery, J., Curtis, C. and Handman, E. (2002). Genetic and structural heterogeneity of proteophosphoglycan in Leishmania. Molecular and Biochemical Parasitology 121, 7585.CrossRefGoogle ScholarPubMed
Montgomery, J., Ilg, T., Thompson, J. K., Kobe, B. and Handman, E. (2000). Identification and predicted structure of a leucine-rich repeat motif shared by Leishmania major proteophosphoglycan and parasite surface antigen 2. Molecular and Biochemical Parasitology 107, 289295.CrossRefGoogle ScholarPubMed
Murray, H. W. (2004). Treatment of visceral leishmaniasis in 2004. American Journal of Tropical Medicine and Hygiene 71, 787794.CrossRefGoogle ScholarPubMed
Perez-Victoria, F. J., Castanys, S. and Gamarro, F. (2003). Leishmania donovani resistance to miltefosine involves a defective inward translocation of the drug. Antimicrobial Agents and Chemotherapy 47, 23972403.CrossRefGoogle ScholarPubMed
Piani, A., Ilg, T., Elefanty, A. G., Curtis, J. and Handman, E. (1999). Leishmania major proteophosphoglycan is expressed by amastigotes and has an immunomodulatory effect on macrophage function. Microbes and Infection 1, 589599.CrossRefGoogle ScholarPubMed
Rakotomanga, M., Saint-Pierre-Chazalet, M. and Loiseau, P. M. (2005). Alteration of fatty acid and sterol metabolism in miltefosine-resistant Leishmania donovani promastigotes and consequences for drug-membrane interactions. Antimicrobial Agents and Chemotherapy 49, 26772686.CrossRefGoogle ScholarPubMed
Rogers, M. E., Ilg, T., Nikolaev, A. V., Ferguson, M. A. J. and Bates, P. A. (2004). Transmission of cutaneous leishmaniasis by sand flies is enhanced by regurgitation of fPPG. Nature, London 430, 464467.CrossRefGoogle ScholarPubMed
Sharma, P., Singh, N., Garg, R., Haq, W. and Dube, A. (2004). Efficacy of human β-casein fragment (54–59) and its synthetic analogue compound 89/215 against Leishmania donovani in hamsters. Peptides 25, 18731881.CrossRefGoogle ScholarPubMed
Singh, A. K., Papadopoulou, B. and Ouellette, M. (2001). Gene amplification in amphotericin B-resistant Leishmania tarentolae. Experimental Parasitology 99, 141147.CrossRefGoogle ScholarPubMed
Singh, N., Almeida, R., Kothari, H., Kumar, P., Mandal, G., Chatterjee, M., Venkatachalam, S., Govind, M. K., Mandal, S. K. and Sundar, S. (2007) Differential gene expression analysis in antimony unresponsive Indian kala azar (visceral leishmaniasis) clinical isolates by DNA microarray. Parasitology (in the Press) [Epub ahead of print] PMID: 17306059.CrossRefGoogle ScholarPubMed
Stierhof, Y. D., Bates, P. A., Jacobson, R. L., Rogers, M. E., Schlein, Y., Handman, E and Ilg, T. (1999). Filamentous proteophosphoglycan secreted by Leishmania promastigotes forms gel-like three-dimensional networks that obstruct the digestive tract of infected sand fly vectors. European Journal of Cell Biology 78, 675689.CrossRefGoogle Scholar
Sundar, S., Pai, K., Kumar, R., Pathak-Tripathi, K., Gam, A. A., Ray, M. and Kenney, R. T. (2001). Resistance to treatment in kala-azar: speciation of isolates from northeast India. American Journal of Tropical Medicine and Hygiene 65, 193196.CrossRefGoogle ScholarPubMed
Towbin, H., Staehelin, T. and Gordon, J. (1979). Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proceedings of the National Academy of Sciences, USA 76, 43504354.CrossRefGoogle ScholarPubMed