Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-26T01:03:18.789Z Has data issue: false hasContentIssue false

Proteolytic expression in Blastocrithidia culicis: influence of the endosymbiont and similarities with virulence factors of pathogenic trypanosomatids

Published online by Cambridge University Press:  02 November 2004

C. M. D'AVILA-LEVY
Affiliation:
Departamento de Microbiologia Geral, Instituto de Microbiologia Prof. Paulo de Góes (IMPPG), Centro de Ciências da Saúde (CCS), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, 21941-590, Brazil
F. M. ARAUJO
Affiliation:
Departamento de Microbiologia Geral, Instituto de Microbiologia Prof. Paulo de Góes (IMPPG), Centro de Ciências da Saúde (CCS), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, 21941-590, Brazil
A. B. VERMELHO
Affiliation:
Departamento de Microbiologia Geral, Instituto de Microbiologia Prof. Paulo de Góes (IMPPG), Centro de Ciências da Saúde (CCS), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, 21941-590, Brazil
R. M. A. SOARES
Affiliation:
Departamento de Microbiologia Geral, Instituto de Microbiologia Prof. Paulo de Góes (IMPPG), Centro de Ciências da Saúde (CCS), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, 21941-590, Brazil
A. L. S. SANTOS
Affiliation:
Departamento de Microbiologia Geral, Instituto de Microbiologia Prof. Paulo de Góes (IMPPG), Centro de Ciências da Saúde (CCS), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, 21941-590, Brazil
M. H. BRANQUINHA
Affiliation:
Departamento de Microbiologia Geral, Instituto de Microbiologia Prof. Paulo de Góes (IMPPG), Centro de Ciências da Saúde (CCS), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, 21941-590, Brazil

Abstract

Blastocrithidia culicis is an insect trypanosomatid that presents bacterial endosymbionts. The cell-associated and secreted proteinases of the endosymbiont-bearing and aposymbiotic strains were compared through the incorporation of proteinaceous substrates into sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). Few qualitative changes could be detected in the proteolytic zymograms in the 2 strains studied when gelatin, casein, haemoglobin or bovine serum albumin (BSA) were tested. However, the level of proteolytic activities was significantly higher in the aposymbiotic strain. Some of the B. culicis proteins reacted in Western blots with antibodies raised against gp63, a zinc-metalloproteinase, and cruzipain, a cysteinyl-proteinase, which are virulence factors of the human pathogenic trypanosomatids, Leishmania spp. and Trypanosoma cruzi, respectively. The anti-cross-reacting determinant (CRD) antibody recognized 2 polypeptides (50 and 58 kDa) in the spent culture media and in the supernatant from glycosylphosphatidylinositol-phospholipase C (GPI-PLC)-treated cells, suggesting that these proteins are GPI-anchored to the plasma membrane. In addition, the anti-gp63 reacted with the 50 kDa protein. The identification of protein homologues in trypanosomatids with distinct life-cycles may help to determine the importance of proteinases in trypanosomatids.

Type
Research Article
Copyright
2005 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

ALMEIDA, F. V. S., GIOVANNI-DE-SIMONE, S., BRANQUINHA, M. H. & VERMELHO, A. B. ( 2003). Extracellular metalloproteinase activity in Phytomonas françai. Parasitology Research 89, 320322.Google Scholar
BRANQUINHA, M. H., VERMELHO, A. B., GOLDENBERG, S. & BONALDO, M. C. ( 1996). Ubiquity of cysteine- and metalloproteinase activities in a wide range of trypanosomatids. Journal of Eukaryotic Microbiology 43, 131135.CrossRefGoogle Scholar
CAZZULO, J. J., STOKA, V. & TURK, V. ( 2001). The major cysteine proteinase of Trypanosoma cruzi: a valid target for chemotherapy of Chagas disease. Current Pharmaceutical Design 7, 11431156.CrossRefGoogle Scholar
CUEVAS, I. C., CAZZULO, J. J. & SÁNCHEZ, D. O. ( 2003). gp63 homolgues in Trypanosoma cruzi: surface antigens with metalloprotease activity and a possible role in host cell infection. Infection and Immunity 71, 57395749.CrossRefGoogle Scholar
D'AVILA-LEVY, C. M., MELO, A. C. N., VERMELHO, A. B. & BRANQUINHA, M. H. ( 2001). Differential expression of proteolytic enzymes in endosymbiont-harboring Crithidia species. FEMS Microbiology Letters 202, 7377.CrossRefGoogle Scholar
D'AVILA-LEVY, C. M., SOUZA, R. F., GOMES, R. C., VERMELHO, A. B. & BRANQUINHA, M. H. ( 2003 a). A metalloproteinase extracellularly released by Crithidia deanei. Canadian Journal of Microbiology 49, 625632.Google Scholar
D'AVILA-LEVY, C. M., SOUZA, R. F., GOMES, R. C., VERMELHO, A. B. & BRANQUINHA, M. H. ( 2003 b). A novel extracellular calcium-dependent cysteine proteinase from Crithidia deanei. Archives of Biochemistry and Biophysics 420, 18.Google Scholar
DE SOUZA, W. & MOTTA, M. C. M. ( 1999). Endosymbiosis in protozoa of the Trypanosomatidae family. FEMS Microbiology Letters 173, 18.CrossRefGoogle Scholar
ETGES, R. ( 1992). Identification of a surface metalloproteinase on 13 species of Leishmania isolated from humans, Crithidia fasciculata, and Herpetomonas samuelpessoai. Acta Tropica 50, 205217.CrossRefGoogle Scholar
FERGUSON, M. A. J. ( 1999). The structure, biosynthesis and functions of glycosylphosphatidylinositol anchors, and the contributions of trypanosome research. Journal of Cell Science 112, 27992809.Google Scholar
GREIG, S. & ASHALL, F. ( 1990). Electrophoretic detection of Trypanosoma cruzi peptidases. Molecular and Biochemical Parasitology 39, 3138.CrossRefGoogle Scholar
GRUSZYNSK, A. E., DEMASTER, A., HOOPER, N. M. & BANGS, J. D. ( 2003). Surface coat remodeling during differentiation of Trypanosoma brucei. The Journal of Biological Chemistry 278, 2466524672.CrossRefGoogle Scholar
JAFFE, C. L. & DWYER, D. M. ( 2003). Extracellular release of the surface metalloprotease, gp63, from Leishmania and insect trypanosomatids. Parasitology Research 91, 229237.CrossRefGoogle Scholar
JONES, B. L., FONTANINI, D., JARVINEN, D. & PEKKARINEN, A. ( 1998). Simplified endoproteinase assays using gelatin or azogelatin. Analytical Biochemistry 263, 214220.CrossRefGoogle Scholar
LACOUNT, D. J., GRUSZYNSKI, A. E., GRANDGNETT, P. M., BANGS, J. D. & DONELSON, J. E. ( 2003). Expression and function of the Trypanosoma brucei major surface protease (GP63) genes. The Journal of Biological Chemistry 278, 2465824664.CrossRefGoogle Scholar
LOPEZ, J. D., CAULADA, Z., BARBIERI, C. L. & CAMARGO, E. P. ( 1981). Cross-reactivity between Trypanosoma cruzi and insect trypanosomatids as a basis for the diagnosis of Chagas' disease. American Journal of Tropical Medicine and Hygiene 30, 11831188.CrossRefGoogle Scholar
MELO, A. C. N., GIOVANNI-DE-SIMMONE, S., BRANQUINHA, M. H. & VERMELHO, A. B. ( 2001). Crithidia guilhermei: purification and partial characterization of a 62-kDa extracellular metalloproteinase. Experimental Parasitology 97, 18.Google Scholar
MELO, A. C. N., D'AVILA-LEVY, C. M., BRANQUINHA, M. H. & VERMELHO, A. B. ( 2002). Crithidia guilhermei: gelatin- and hemoglobin-degrading extracellular metalloproteinases. Experimental Parasitology 102, 150156.CrossRefGoogle Scholar
ROITMAN, C., ROITMAN, I. & AZEVEDO, H. P. ( 1972). Growth of an insect trypanosomatid at 37 °C in a defined medium. Journal of Protozoology 19, 346349.CrossRefGoogle Scholar
SAJID, M. & McKERROW, J. H. ( 2002). Cysteine proteases of parasitic organisms. Molecular and Biochemical Parasitology 120, 121.CrossRefGoogle Scholar
SANTOS, A. L. S., FERREIRA, A., FRANCO, A. V., ALVIANO, C. S. & SOARES, R. M. A. ( 1999). Characterization of proteinases in Herpetomonas anglusteri and Herpetomonas roitmani. Current Microbiology 39, 6164.CrossRefGoogle Scholar
SANTOS, A. L. S., ABREU, C. M., BATISTA, L. M., ALVIANO, C. S. & SOARES, R. M. A. ( 2001). Cell-associated and extracellular proteinases in Blastocrithidia culicis: influence of growth conditions. Current Microbiology 43, 100106.CrossRefGoogle Scholar
SANTOS, A. L. S., ABREU, C. M., ALVIANO, C. S. & SOARES, R. M. A. ( 2002). Activation of the glycosylphosphatidylinositol-anchored membrane proteinases upon release from Herpetomonas samuelpessoai by phospholipase C. Current Microbiology 45, 293298.CrossRefGoogle Scholar
SCHNEIDER, P. & GLASER, T. A. ( 1993). Characterization of a surface metalloprotease from Herpetomonas samuelpessoai and comparison with Leishmania major promastigote surface protease. Molecular and Biochemical Parasitology 58, 277282.CrossRefGoogle Scholar
SOARES, R. M. A., SANTOS, A. L. S., BONALDO, M. C., ANDRADE, A. F. B., ALVIANO, C. S., ANGLUSTER, J. & GOLDENBERG, S. ( 2003). Leishmania (Leishmania) amazonensis: differential expression of proteinases and cell-surface polypeptides in avirulent and virulent promastigotes. Experimental Parasitology 104, 104112.CrossRefGoogle Scholar
SOUSA, M. A. ( 1994). Trypomastigotes in cultures of Blastocrithidia culicis (Novy, MacNeal & Torrey, 1907) (Kinetoplastida: Trypanosomatidae). Memórias do Instituto Oswaldo Cruz 89, 111112.CrossRefGoogle Scholar
VERMELHO, A. B., ALMEIDA, F. V. S., BRONZATO, L. S. & BRANQUINHA, M. H. ( 2003). Extracellular metalloproteinases in Phytomonas serpens. Canadian Journal of Microbiology 49, 221224.CrossRefGoogle Scholar
YAO, C., DONELSON, J. E. & WILSON, M. E. ( 2003). The major surface protease (MSP or GP63) of Leishmania sp. Biosynthesis, regulation of expression, and function. Molecular and Biochemical Parasitology 132, 116.Google Scholar
WALLACE, F. G. ( 1966). The trypanpanosomatid parasites of insects and arachnids. Experimental Parasitology 18, 124193.CrossRefGoogle Scholar