Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-26T00:29:22.734Z Has data issue: false hasContentIssue false

Proteinases of Leishmania mexicana and other flagellate protozoa

Published online by Cambridge University Press:  06 April 2009

G. H. Coombs
Affiliation:
Department of Zoology, University of Glasgow, Glasgow G12 8QQ

Summary

The amastigote form of the human pathogen Leishmania mexicana contains high proteinase activity, some 20 times greater than that in the promastigote form and macrophages and appreciably higher than the activity in other flagellate protozoa. The main amastigote enzymes are soluble, whereas those of the promastigote are particulate, and have inhibitor sensitivities characteristic of cysteine proteinases. The very high soluble proteinase activity of L. mexicana amastigotes may be a primary factor in the survival and growth of this mammalian stage in its potentially degradative intracellular habitat.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1982

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Alexander, J. & Vickerman, K. (1975). Fusion of host cell secondary lysosomes with the parasitophorous vacuoles of Leishmania mexicana-infected macrophages. Journal of Protozoology 22, 502–8.CrossRefGoogle ScholarPubMed
Asghar, S. S. (1977). Diphenyldiamidines – a theoretical evaluation of their possible therapeutic uses. Journal of Molecular Medicine 2, 124.Google Scholar
Barrett, A. J. (1977). Cathepsin B. In Proteinases in Mammalian Cells and Tissues (ed. Barrett, A. J.), pp. 204205. Amsterdam: Elsevier/North Holland Biomedical Press.Google Scholar
Barrett, A. J. (1980). Proteinase inhibitors: potential drugs? In Enzyme Inhibitors as Drugs (ed. Sandler, M.), pp. 219–29. London: Macmillan.Google Scholar
Bongertz, V. & Hungerer, K. D. (1978). Trypanosoma cruzi: isolation and characterisation of a protease. Experimental Parasitology 45, 818.CrossRefGoogle ScholarPubMed
Camargo, E. P. (1964). Growth and differentiation in Trypanosoma cruzi. I. Origin of metacyclic trypanosomes in liquid media. Revista do Instituto de Medicina tropical de São Paulo 6, 93100.Google ScholarPubMed
Camargo, E. P., Itow, S. & Alfieri, S. C. (1978). Proteolytic activities in cell extracts of trypanosomatids. Journal of Parasitology 64, 1120–1.CrossRefGoogle ScholarPubMed
Coombs, G. H. (1976). Studies on the activity of nitroimidazoles. In Biochemistry of Parasites and Host–parasite Relationships (ed. Van den Bossche, H.), pp. 545–52. Amsterdam: Elsevier/North Holland Biomedical Press.Google Scholar
Coombs, G. H. & Gutteridge, W. E. (1975). Growth in vitro and metabolism of Plasmodium vinckei chabaudi. Journal of Protozoology 22, 555–60.CrossRefGoogle ScholarPubMed
Dingle, J. T. (1977). Lysosomes. 2nd edn.Amsterdam: Elsevier/North Holland Biomedical Press.Google Scholar
Fong, D. & Bonner, J. T. (1979). Proteases in cellular slime mould development: evidence for their involvement. Proceedings of the National Academy of Sciences, USA 76, 6481–5.CrossRefGoogle Scholar
Goldstein, B. D., Witz, G., Amoruso, M. & Troll, W. (1979). Protease inhibitors antagonise the activation of polymorphonuclear leukocyte oxygen consumption. Biochemical and Biophysical Research Communications 88, 854–60.CrossRefGoogle Scholar
Hart, D. T., Vickerman, K. & Coombs, G. H. (1981). A quick, simple method for purifying Leishmania mexicana amastigotes in large numbers. Parasitology 82, 345–55.CrossRefGoogle ScholarPubMed
Lowry, O. H., Rosebrough, N. J., Farr, A. L. & Randall, R. J. (1951). Protein measurement with the folin phenol reagent. Journal of Biological Chemistry 193, 265–75.CrossRefGoogle ScholarPubMed
McLaughlin, J. & Faubert, G. (1977). Partial purification and some properties of a neutral sulphydryl and an acid proteinase from Entamoeba histolytica. Canadian Journal of Microbiology 23, 420–5.CrossRefGoogle Scholar
McLaughlin, J. & Muller, M. (1979). Purification and characterisation of a low molecular weight thiol proteinase from the flagellate protozoan Tritrichomonas foetus. Journal of Biological Chemistry 254, 1526–33.CrossRefGoogle Scholar
North, M. J. & Coombs, G. H. (1981). Proteinases of Leishmania mexicana amastigotes and promastigotes: analysis by gel electrophoresis. Molecular and Biochemical Parasitology (in the Press).CrossRefGoogle ScholarPubMed
Starkey, P. M. (1977). Elastase and cathepsin G. In Proteinases in Mammalian Cells and Tissues (ed. Barrett, A. J.), pp. 8283. Amsterdam: Elsevier/North Holland Biomedical Press.Google Scholar
Steiger, R. F., Van Hoof, F., Bontemps, J., Nyssens-Jadin, M. & Druetz, J.-E. (1979). Acid hydrolases of trypanosomatic flagellates. Acta Tropica 36, 335–41.Google Scholar