Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-11-26T17:56:16.209Z Has data issue: false hasContentIssue false

Proteinases of females of the phytoparasite Globodera pallida (potato cyst nematode)

Published online by Cambridge University Press:  06 April 2009

V. M. Koritsas
Affiliation:
Centre for Plant Biochemistry and Biotechnology, The University, Leeds LS2 9JT, UK
H. J. Atkinson
Affiliation:
Centre for Plant Biochemistry and Biotechnology, The University, Leeds LS2 9JT, UK

Summary

Sensitive assays capable of detecting proteinases in single females of the phytoparasite Globodera pallida have been developed and used to define the proteinase activity of young adult females. Digestion of the large subunit of the plant protein Rubisco established a pH optimum for the proteinase activity at pH 5·7. The activity was inhibited by the cysteine proteinase inhibitors p-chloromercuribenzoic acid (PMBA) and p-chloromercurisulphonic acid (PMSA) and stimulated by both cysteine and dithiothreitol (DTT). It was moderately reduced by L-trans-epoxysuccinyl-leucylamido-(4- guanidino) butane (E64) but not by specific inhibitors of serine, aspartate or metallo-proteinases. The activity separated into 3 bands on a non-denaturing gel but only I proteinase of 62 kDa was recovered following a combination of anion-exchange chromatography and affinity chromatography using PMBA. The effect of inhibitors was similar to that reported previously for some of the cysteine proteinase activity recovered from Caenorhabditis elegans but is apparently not that for which the corresponding gene has been cloned in this nematode and Haemonchus contortus. The proteinase may have a major role in digestion of dietary protein and so offers an exciting target for future control of this important plant-parasitic nematode.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Atkinson, H. J. & Harris, P. D. (1989). Changes in nematode antigens recognized by monoclonal antibodies during early infection of soya beans with the cyst nematode Heterodera glycines. Parasitology 98, 479–87.CrossRefGoogle Scholar
Atkinson, H. J., Harris, P. D., Halk, E. J., Novitski, C., Leighton-Sands, J., Nolan, P. & Fox, P. C. (1988). Monoclonal antibodies to the soya bean cyst nematode Heterodera glycines. Annals of Applied Biology 112, 459–69.CrossRefGoogle Scholar
Avila, E. E., Sánchez-Garza, M. & Calderón, J. (1985). Entamoeba histolytica and E. invadens: sulphydryldependent proteolytic activity. Journal of Protozoology 32, 163–6.CrossRefGoogle Scholar
Barrett, A. J. (1980). Introduction: the classification of proteinases. In: Protein Degradation in Health and Disease. Ciba Foundation Symposium 75, 113. Amsterdam: Excerpta Medica.CrossRefGoogle Scholar
Bayer, E. A. & Wilchek, M. (1990). Protein biotinylation. In: Methods in Enzymology 184 (ed. Wilchek, M. & Bayer, E. A.), pp. 138–60. San Diego, California: Academic Press.Google Scholar
Baylis, H. A., Megson, A., Mottram, J. C. & Hall, R. (1992). Characterisation of a gene for a cysteine protease from Theileria annulata. Molecular and Biochemical Parasitology 54, 105–8.CrossRefGoogle ScholarPubMed
Betka, M., Grundler, F. & Wyss, U. (1991). Influence of changes in the nurse cell system (syncytium) on the development of the cyst nematode Heterodera schachtii: single amino acids. Phytopathology 81, 75–9.CrossRefGoogle Scholar
Chavez-Olortegui, C., Resende, M. & Tavares, C. A. P. (1992). Purification and characterization of a 47 kDa protease from Schistosoma mansoni cercarial secretion. Parasitology 105, 211–18.CrossRefGoogle ScholarPubMed
Cox, G. N., Pratt, D., Hageman, R. & Boisvenue, R. J. (1990). Molecular cloning and primary sequence of a cysteine protease expressed by Haemonchus contortus adult worms. Molecular and Biochemical Parasitology 41, 2534.CrossRefGoogle ScholarPubMed
Dasgupta, D. R. & Ganguly, A. K. (1975). Isolation, purification and characterization of a trypsin-like protease from the root-knot nematode, Meloidogyne incognita. Nematologica 21, 370–84.CrossRefGoogle Scholar
Eakin, A. E., Mills, A. A., Harth, G., McKerrow, J. H. & Craik, C. S. (1992). The sequence, organization, and expression of the major cysteine protease (Cruzain) from Trypanosoma cruzi. Journal of Biological Chemistry 11, 741–12.Google Scholar
Healer, J., Ashall, F. & Maizels, R. M. (1991). Characterization of proteolytic enzymes from larval and adult Nippostrongylus brasiliensis. Parasitology 103, 305–14.CrossRefGoogle ScholarPubMed
Hepher, A. & Atkinson, H. J. (1992). Nematode Control with Proteinase Inhibitors. European Patent Application Number, 92301890.7; Publication Number 0 502 730 A1.Google Scholar
Hilder, V. A., Gatehouse, A. M. R., Sheerman, S. E., Barker, R. F. & Boulter, D. (1987). A novel mechanism of insect resistance engineered into tobacco. Nature, London 220, 160–3.CrossRefGoogle Scholar
Jacobson, L. A., Jen-Jacobsen, L., Hawdon, J. M., Owens, G. P., Bolanowski, M. A., Wilson Emmons, S., Shah, M. V., Pollock, R. A. & Conklin, D. S. (1988). Identification of a putative structural gene for cathepsin D in Caenorhabditis elegans. Genetics 119, 353–63.CrossRefGoogle ScholarPubMed
Jones, M. G. K. (1981). The development and function of plant cells modified by endoparasitic nematodes. In: Plant Parasitic Nematodes, Vol. III (ed. Zuckerman, B. M. & Rohde, R. A.), pp. 255279. New York: Academic Press.CrossRefGoogle Scholar
Kembhavi, A. A., Buttle, D. J., Knight, G. C. & Barrett, A. J. (1993). The two cysteine endopeptidases of legume seeds: purification and characterization by use of specific fluorometric assays. Archives of Biochemistry and Biophysics 303, 208–13.CrossRefGoogle ScholarPubMed
Kirschke, H., Langner, J., Riemann, S., Wiederanders, B., Ansorge, S. & Bohley, P. (1980). Lysosomal cysteine proteinases. In: Protein Degradation in Health and Disease. Ciba Foundation Symposium 75, 1535. Amsterdam: Excerpta Medica.CrossRefGoogle Scholar
Koritsas, V. M. (1990). Biochemical and physiological responses of oil seed rape (Brassica napus L.) to infestation by the cabbage stem flea beetle (Psylliodes chrysocephala L.). Ph.D. thesis, University of London.Google Scholar
Laemmli, U. K. (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, London 227, 680–5.CrossRefGoogle ScholarPubMed
Landsperger, W. J., Stirewalt, M. A. & Dresden, M. H. (1982). Purification and properties of a proteolytic enzyme from the cercariae of the human trematode parasite Schistosoma mansoni. The Biochemical Journal 201, 137–44.CrossRefGoogle ScholarPubMed
Luaces, A. L. & Barrett, A. J. (1988). Affinity purification and biochemical characterization of histolysin, the major cysteine proteinase of Entamoeba histolytica. The Biochemical Journal 250, 903–9.CrossRefGoogle ScholarPubMed
Mbawa, Z. R., Gumm, I. D., Shaw, E. & Lonsdale-Eccles, J. D. (1992). Characterisation of a cysteine protease from bloodstream forms of Trypanosoma congolense. European Journal of Biochemistry 204, 371–9.CrossRefGoogle ScholarPubMed
McKerrow, J. H. (1989). Parasite proteases. Experimental Parasitology 68, 111–15.CrossRefGoogle ScholarPubMed
Mikola, L. (1986). Acid carboxypeptidases in grains and leaves of wheat, Triticum aestivum L. Plant Physiology 81, 823–9.CrossRefGoogle ScholarPubMed
Miller, J. W., Kramer, K. J. & Law, I. H. (1974). Isolation and partial characterization of the larval midgut trypsin from the tobacco hornworm Manduca sexta Johannson. (Lepidoptera: Sphingidae). Comparative Biochemistry and Physiology 48B, 117–29.Google ScholarPubMed
Perry, R. N., Knox, D. P. & Beane, J. (1992). Enzymes released during hatching of Globodera rostochiensis and Meloidogyne incognita. Fundamental and Applied Nematology 15, 283–8.Google Scholar
Pratt, D., George, N. C., Michael, J. M. & Rudolph, J. B. (1990). A developmentally regulated cysteine protease gene family in Haemonchus contortus. Molecular and Biochemical Parasitology 43, 181–92.CrossRefGoogle ScholarPubMed
Ray, C. & McKerrow, J. H. (1992). Gut-specific and developmental expression of a Caenorhabditis elegans cysteine protease gene. Molecular and Biochemical Parasitology 51, 239–50.CrossRefGoogle ScholarPubMed
Richer, J. K., Sakanari, J. A., Frank, G. R. & Grieve, R. B. (1992). Dirofilaria immitis: proteases produced by third- and fourth-stage larvae. Experimental Parasitology 75, 213–22.CrossRefGoogle ScholarPubMed
Rosenthal, P. J. & Nelson, R. G. (1992). Isolation and characterization of a cysteine proteinase gene of Plasmodium falciparum. Molecular and Biochemical Parasitology 51, 143–52.CrossRefGoogle ScholarPubMed
Ryan, C. A. (1990). Protease inhibitors in plants: genes for improving defences against insects and pathogens. Annual Review of Phytopathology 28, 425–49.CrossRefGoogle Scholar
Sakanari, J. A. (1990). Anisakis – from the platter to the microfuge. Parasitology Today 6, 323–7.CrossRefGoogle Scholar
Sakanari, J. A., Staunton, C. E., Eakin, A. E., Craik, C. S. & McKerrow, J. H. (1989). Serine proteases from nematode and protozoan parasites: isolation of sequence homologs using generic molecular probes. Proceedings of the National Academy of Sciences, USA 86, 4863–7.CrossRefGoogle ScholarPubMed
Sarkis, G. J., Kurpiewski, M. R., Ashcom, J. D., Jen-Jacobson, L. & Jacobson, L. A. (1988). Proteases of the nematode Caenorhabditis elegans. Archives of Biochemistry and Biophysics 15, 8090.CrossRefGoogle Scholar
Snedecor, G. W. & Cochran, W. G. (1989). Statistical Methods. Ames, Iowa: Iowa State University Press.Google Scholar