Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-22T19:58:33.108Z Has data issue: false hasContentIssue false

Protease expression analysis in recently field-isolated strains of Trypanosoma cruzi: a heterogeneous profile of cysteine protease activities between TC I and TC II major phylogenetic groups

Published online by Cambridge University Press:  14 July 2008

P. FAMPA
Affiliation:
Laboratório de Biologia Molecular de Tripanosomatídeos e Flebotomíneos, Instituto Oswaldo Cruz, Fiocruz. Av. Brasil, 4365, 21045-900, Rio de Janeiro, Brazil
C. V. LISBOA
Affiliation:
Laboratório de Biologia de Tripanosomatídeos, Instituto Oswaldo Cruz, Fiocruz. Av. Brasil, 4365, 21045-900, Rio de Janeiro, Brazil
A. M. JANSEN
Affiliation:
Laboratório de Biologia de Tripanosomatídeos, Instituto Oswaldo Cruz, Fiocruz. Av. Brasil, 4365, 21045-900, Rio de Janeiro, Brazil
A. L. S. SANTOS
Affiliation:
Laboratório de Estudos Integrados em Bioquímica Microbiana, Instituto de Microbiologia, UFRJ, Ilha do Fundão, 21941-590, Rio de Janeiro, Brazil
M. I. RAMIREZ*
Affiliation:
Laboratório de Biologia Molecular de Tripanosomatídeos e Flebotomíneos, Instituto Oswaldo Cruz, Fiocruz. Av. Brasil, 4365, 21045-900, Rio de Janeiro, Brazil
*
*Corresponding author: Laboratório de Biologia Molecular de Tripanosomatídeos e Flebotomíneos, Instituto Oswaldo Cruz, Fiocruz. Av. Brasil, 4365, 21045-900, Rio de Janeiro, Brazil. Tel.: +55 21 38658252. Fax: +55 21 25903495. E-mail address: [email protected]

Summary

Protease expression among TCI and TCII field isolates was analysed. Gelatin-containing gels revealed hydrolysis bands with molecular masses ranging from 45 to 66 kDa. The general protease expression profile showed that TCII isolates presented higher heterogeneity compared to TCI. By utilizing protease inhibitors, we showed that all active proteases at acid pH are cysteine-proteases and all proteases active at alkaline pH are metalloproteases. However, the expression of cruzipain, the T. cruzi major cysteine-protease, did not reproduce a heterogeneous TCII cysteine zymogram profile. Dendogram analyses based on presence/absence matrices of proteases and cruzipain bands showed a TCI separation from the TCII group with 50–60% similarity. We suggest that the observed cysteine protease diversification contributes to differential host infection between TCI and II genotypes.

Type
Original Articles
Copyright
Copyright © 2008 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Andrade, S. G. (1999). Trypanosoma cruzi: clonal structure of parasite strain and the importance of principal clones. Memórias do Instituto Oswaldo Cruz 94, 185187.CrossRefGoogle ScholarPubMed
Aparício, I. M., Scharfstein, J. and Lima, A. P. (2004). A new cruzipain-mediated pathway of human cell invasion by Trypanosoma cruzi requires trypomastigote membranes. Infection and Immunity 72, 58925902.CrossRefGoogle ScholarPubMed
Brisse, S., Barnabé, C. and Tibayrenc, M. (2000). Identification of six Trypanosoma cruzi lineages by random amplified polymorphic DNA and multilocus enzyme electrophoresis. International Journal for Parasitology 30, 3544.CrossRefGoogle ScholarPubMed
Brisse, S., Dujradim, J. C. and Tibayrenc, M. (2000). Identification of six Trypanosoma cruzi lineages by sequence-characterised amplified region markers. Molecular and Biochemical Parasitology 111, 95105.CrossRefGoogle ScholarPubMed
Buscaglia, C. A. and Di Noia, J. M. (2003). Trypanosoma cruzi clonal diversity and epidemiology of Chagas' Disease. Microbes and Infection 5, 419427.CrossRefGoogle ScholarPubMed
Campetella, O., Martínez, J. and Cazzulo, J. J. (1990). A major cysteine proteinase regulated in Trypanosoma cruzi. FEMS Microbiology Letters 67, 145150.CrossRefGoogle Scholar
Cazzulo, J. J. (2002). Proteinases of Trypanosoma cruzi: potential targets for the chemotherapy of Chagas disease. Current Topics in Medical Chemistry 2, 12611271.CrossRefGoogle Scholar
Cestari, I. S., Evans-Osses, I., Freitas, J. C., Inal, J. M. and Ramirez, M. I. (1998). Mechanism of lectin complement pathway activation by Trypanosoma cruzi. Journal of Infectious Diseases (in the Press).Google Scholar
Covarrubias, C., Cortez, M., Ferreira, D. and Yoshida, N. (2007). Interaction with host factors exarcebates Trypanosma cruzi cell capacity upon oral infection. International Journal for Parasitology 37, 16091616.CrossRefGoogle Scholar
Cuevas, I. C., Cazzulo, J. J. and Sanchez, O. (2003). gp63 homologues in Trypanosoma cruzi: surface antigens with metalloprotease activity and a possible role in host cell infection. Infection and Immunity 71, 57395749.CrossRefGoogle Scholar
Di Noia, J. M., Buscaglia, C. A., de Marchi, C. R., Almeida, I. C. and Frasch, A. C. (2002). A Trypanosoma cruzi small surface molecule provides the first immunological evidence that Chagas' disease is due to a single parasite lineage. Journal of Experimental Medicine 195, 401413.CrossRefGoogle ScholarPubMed
Dutra, P. M., Couto, L. C., Lopes, A. R. and Meyer-Fernandes, J. R. (2006). Characterization of ecto-phosphatase activities of Trypanosoma cruzi: a comparative study between Colombiana and Y strains. Acta Tropica 100, 8895.CrossRefGoogle ScholarPubMed
Fernandes, O., Souto, R. P., Castro, J. A., Pereira, J. B., Fernandes, N. C., Junqueira, A. C. V., Naiff, R. D., Barret, T. V., Degrave, W., Campbell, D. A. and Coura, J. R. (1998). Brazilian isolates of Trypanosoma cruzi from humans and triatomines classified into two lineages using mini-exon and ribossomal RNA sequences. American Journal of Tropical Medicine and Hygiene 58, 807811.CrossRefGoogle Scholar
Herrera, L., D'Andrea, P. S., Xavier, S. C., Mangia, R. H., Fernándes, O. and Jansen, A. M. (2005). Trypanosoma cruzi infection in wild mammals of the National Park ‘Serra da Capivara’ and its surroundings (Piauí, Brazil), an area endemic for Chagas disease. Transactions of the Royal Society of Tropical Medicine and Hygiene 99, 379388.CrossRefGoogle Scholar
Heussen, C. and Dowdle, E. B. (1980). Electrophoretic analysis of plasminogen activators in polyacrylamide gels containing sodium dodecyl sulfate and copolymerized substrates. Analytical Biochemistry 102, 196202.CrossRefGoogle ScholarPubMed
Lisboa, C. V., Mangia, R. H., de Lima, N. R., Martins, A., Dietz, J., Baker, A. J., Ramon-Miranda, C. R., Ferreira, L. F., Fernandes, O. and Jansen, A. M. (2004). Distinct patterns of Trypanosoma cruzi infection in Leontopithecus rosalia in distinct Atlantic coastal rainforest fragments in Rio de Janeiro–Brazil. Parasitology 129, 703711.CrossRefGoogle ScholarPubMed
Lisboa, C. V., Pinho, A. P., Monteiro, R. V. and Jansen, A. M. (2007). Trypanosma cruzi (kinetoplastida Trypanosomatidae): biological heterogeneity in the isolates derived from wild hosts. Experimental Parasitology 116, 150155.CrossRefGoogle Scholar
Lowdes, C. M., Bonaldo, M. C., Thomaz, N. and Goldenberg, S. (1996). Heterogeneity of metalloprotease expression in Trypanosoma cruzi. Parasitology 112, 393399.CrossRefGoogle Scholar
Lowry, O. H., Rosebrough, N. J., Farr, A. L. and Randall, J. (1951). Protein measurement with the Folin phenol reagent. Journal of Biological Chemistry 139, 265275.CrossRefGoogle Scholar
Mathieu-Daudé, F., Bosseno, M. F., Garzon, E., Lelièvre, J., Sereno, D., Ouaissi, A. and Brenière, S. F. (2007). Sequence diversity and differential expression of Tc52 immuno-regulatory protein in Trypanosoma cruzi: potential implications in the biological variability of strains. Parasitology Research 101, 13551363.CrossRefGoogle ScholarPubMed
Meirelles, M. N., Juliano, L., Carmona, E., Silva, S. G., Costa, E. M., Murta, A. C. and Scharfstein, J. (1992). Inhibitors of the major cysteinyl proteinase (GP57/51) impair host cell invasion and arrest the intracellular development of Trypanosoma cruzi in vitro. Molecular and Biochemical Parasitology 52, 175184.CrossRefGoogle ScholarPubMed
Morel, C. M., Deane, M. P. and Gonçalves, A. M. (1986). The complexity of Trypanosoma cruzi populations revealed by schizodeme analysis. Parasitology Today 2, 97100.CrossRefGoogle ScholarPubMed
O' Connor, O., Bosseno, M. F., Barnabé, C., Douzery, E. J. P. and Brenière, S. F. (2007). Genetic clustering of Trypanosoma cruzi I lineage evidenced by intergenic miniexon gene sequencing. Infection, Genetics and Evolution 7, 587593.CrossRefGoogle ScholarPubMed
Risso, M. G., Garbarino, G. B., Mocetti, E., Campetella, O., Cappa, S. M. G., Buscaglia, C. A. and Leguizamón, M. S. (2004). Differential expression of a virulence factor, the trans-sialidase, by the main Trypanosoma cruzi phylogenetic lineages. Journal of Infectious Diseases 189, 22502259.CrossRefGoogle ScholarPubMed
Ruiz, R. C., Favoreto, S. Jr., Dorta, M. L., Oshiro, M. E., Ferreira, A. T., Manque, P. M. and Yoshida, N. (1998). Infectivity of Trypanosoma cruzi strains is associated with differential expression of surface glycoproteins with differential Ca2+ signalling activity. The Biochemical Journal 330, 505511.CrossRefGoogle ScholarPubMed
Sajid, M. and McKerrow, J. H. (2002). Cysteine proteases of parasitic organisms. Molecular and Biochemical Parasitology 120, 121.CrossRefGoogle ScholarPubMed
Santos, A. L., Branquinha, M. H. and D'Avila-Levy, C. M. (2006). The ubiquitous gp63-like metalloprotease from lower trypanosomatids: in the search for a function. Anais da Academia Brasileira de Ciências 78, 687714.CrossRefGoogle ScholarPubMed
Secretaria de Vigilância em Saúde, Ministério da Saúde. Doença de Chagas aguda relacionada à ingestão de caldo de cana em Santa Catarina. http://www.anvisa;gov.br/divulga/noticias/2005/240305_nota.pdfGoogle Scholar
Souto, R. P., Fernandes, O., Macedo, A. M., Campbell, D. A. and Zingales, B. (1996). DNA markers define two major phylogenetic lineages of Trypanosoma cruzi. Molecular and Biochemical Parasitology 83, 141152.CrossRefGoogle ScholarPubMed
Tibayrenc, M. and Ayala, F. (1988). Isozyme variability in Trypanosoma cruzi, the agent of Chagas' disease: genetical, taxonomical and epidemiological significance. Evolution 42, 277292.Google ScholarPubMed
World Health Organization (2005). http://www.who.int/en/Google Scholar
Yong, V., Schimtz, V., Vannier-Santos, M. A., Lima, A. P., Lalmanach, G., Juliano, L., Gaultier, F. and Scharfstein, J. (2000). Altered expression of cruzipain and a cathepsin B-like target in a Trypanosoma cruzi cell line displaying resistance to synthetic inhibitors of cysteine-proteinases. Molecular and Biochemical Parasitology 109, 4759.CrossRefGoogle Scholar