Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-24T12:12:39.887Z Has data issue: false hasContentIssue false

The presence of agglutinating antibody in the IgM immunoglobulin fraction of rabbit antiserum during experimental African trypanosomiasis*

Published online by Cambridge University Press:  06 April 2009

J. R. Seed
Affiliation:
Laboratory of Parasitology, Department of Biology, Tulane University, New Orleans, Louisiana
Renee L. Cornille
Affiliation:
Laboratory of Parasitology, Department of Biology, Tulane University, New Orleans, Louisiana
E. L. Risby
Affiliation:
Laboratory of Parasitology, Department of Biology, Tulane University, New Orleans, Louisiana
A. A. Gam
Affiliation:
Laboratory of Parasitology, Department of Biology, Tulane University, New Orleans, Louisiana

Extract

The IgM levels in rabbits infected with Trypanosoma gambiense are raised. Agglutinating antibody has been found in the IgM immunoglobulin fraction of sera obtained from these infected rabbits. Agglutinating antibody was first found in the IgM fraction and later in the infection appeared in both the IgM and IgG fractions. Precipitating antibody to blood trypanosome antigens was found solely in the IgG fraction.

On the basis of the data presented here a working hypothesis is developed to explain the raised IgM immunoglobulin levels found in the sera of rabbits and humans infected with T. gambiense.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1969

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Houba, V. & Allison, A. C. (1966). m-Anti-Globulins (rheumatoid-factor-like globulins) and other gamma globulins in relation to tropical parasitic infections. Lancet 1, 848–52.CrossRefGoogle ScholarPubMed
Humphrey, J. H. & Dourmashkin, R. R. (1965). Electron microscope studies of immune celllysis. Ciba Symposium on Complement. London.Google Scholar
Ingram, D. G., Barber, H., McLean, D. M., Soltys, M. A. & Coombs, R. R. A. (1959). The conglutination phenomenon. XII. Immuno-conglutinin in experimental infections of laboratory animals. Immunology 2, 268–82.Google ScholarPubMed
Klein, F. & Mattern, P. (1965). Rheumatoid factors in primary and reactive macro-globulinaemia. Ann. rheum. Dis. 24, 458–64.CrossRefGoogle Scholar
Levy, H. B. & Sober, H. A. (1960). A simple chromatographic method for preparation of Gamma Globulin. Proc. Soc. exp. Biol. Med. 103, 250–2.Google Scholar
Lowry, O., Rosenbbough, N. J., Farr, A. L. & Randall, R. (1951). Protein measurement with Folin phenol reagents. J. biol. Chem. 193, 265–76.CrossRefGoogle Scholar
Mandy, W. J., Fudenber, H. H. & Lewis, F. B. (1965). A new serum factor in normal rabbits. I. Identification and characterization. J. Immun. 95, 501–9.Google Scholar
Masseyeff, R. & Lamy, J. (1966). Taux des immunoglobulines sériques au cours de la trypanosomiase Africaine à Trypanosoma gambiense. Clin. Chim. Acta 14, 285–92.CrossRefGoogle Scholar
Mattern, P. (1962a). β2-macroglobluininémie importante chez des malades atteints de trypanosomiase Africaine. Annls Inst. Pasteur, Paris 102, 64–8.Google Scholar
Mattern, P. (1962b). L’hyper-β-macroglobulinemie et l’hyper-β2-macroglobulinorachie temoins constants de la perturbation proteinique humorale au cours de la trypanosomiase humaine. Ninth Intern. Scient. Commit. Tryp. Res. pp. 377–85.Google Scholar
Mattern, P., Duret, J. & Pautrizel, R. (1963). Hyper-β2-macroglobulinemia in the course of experimental trypanosomiasis of the rabbit due to Trypanosoma equiperdum. C.r. hebd. séanc. Acad. Sci., Paris 256, 820–2.Google Scholar
Mattern, P., Masseyeff, R., Michel, R. & Peretti, P. (1961). Étude immuno-chimique de la β2 macroglobuline des serums de malades atteints de trypanosomiase Africaine a T. gambiense. Annls Inst. Pasteur, Paris 101, 382–8.Google Scholar
Robbins, J. B., Kenny, K. & Suter, E. (1965). The isolotion and biological activities of rabbit γM- and γG-anti-Salmonella, typhimurium antibodies. J. exp. Med. 122, 385402.CrossRefGoogle ScholarPubMed
Seed, J. R. (1963). The characterization of antigens isolated from Trypanosoma rhodesiense. J. Protozool. 10, 380–9.Google Scholar
Seed, J. R. & Baquero, M. A. (1965). The characterization of hexokinase from Trypanosoma rhodesiense and Trypanosoma gambiense. J. Protozool. 12, 427–32.Google Scholar
Seed, J. R., Baquero, M. A. & Duda, J. R. (1965). Inhibition of hexose and glycerol utilization by 2-deoxy-D-glucose in Trypanosoma gambiense and Trypanosoma rhodesiense. Expl Parasit. 16, 363–8.Google Scholar
Seed, J. R. & Gam, A. A. (1967). The presence of antibody to a normal rabbit liver antigen in rabbits infected with Trypanosoma gambiense. J. Parasit. 53, 946–50.Google Scholar
Sell, K. W. & Spooner, R. L. (1966). Differential effectiveness of complement fixed IgG and IgM antibodies in the cytolysis of dog kidney culture cells. Immunology 11, 533–46.Google Scholar
Smith, J. W., Barnett, J. A., May, R. P. & Sanford, J. (1967). Comparison of the opsonic activity of γ-G- and γ-M-antiproteus globulins. J. Immun. 98, 336–43.CrossRefGoogle ScholarPubMed
Spooner, R. L. & Sell, K. W. (1966). Comparison of the behaviour of IgG and IgM anti-Forssman antibodies in agglutination, haemolysis and cytolysis. Immunology 11, 521–31.Google ScholarPubMed
Svehag, S. E. & Mandel, B. J. (1964). The formation and properties of Poliovirus-neutralizing antibody. I. 19S and 7S antibody formation: Differences in kinetics and antigen dose requirements for induction. J. exp. Med. 119, 119.Google Scholar
Tobie, J. E., Abele, D. C, Wolff, S. M., Contacos, P. G. & Evans, B. B. (1966). Serum immunoglobulin levels in human malaria and their relationship to antibody production. J. Immun. 97, 498505.CrossRefGoogle ScholarPubMed
Uhr, J. W. & Finklestein, M. S. (1963). Antibody formation. IV. Formation of rapidly and slowly sedimenting antibodies and immunological memory to bacteriphage ΦX 174. J. exp. Med. 117, 457–77.CrossRefGoogle Scholar