Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-26T03:12:41.520Z Has data issue: false hasContentIssue false

Presence of a plant-like proton-translocating pyrophosphatase in a scuticociliate parasite and its role as a possible drug target

Published online by Cambridge University Press:  14 August 2014

NATALIA MALLO
Affiliation:
Department of Microbiology and Parasitology, Laboratory of Parasitology, Institute of Research and Food Analysis, University of Santiago de Compostela, c/Constantino Candeira s/n, 15782, Santiago de Compostela, La Coruña, Spain
JESÚS LAMAS
Affiliation:
Department of Cell Biology and Ecology, Faculty of Biology, University of Santiago de Compostela, La Coruña, Spain
CARLA PIAZZON
Affiliation:
Department of Cell Biology and Ecology, Faculty of Biology, University of Santiago de Compostela, La Coruña, Spain
JOSÉ M. LEIRO*
Affiliation:
Department of Microbiology and Parasitology, Laboratory of Parasitology, Institute of Research and Food Analysis, University of Santiago de Compostela, c/Constantino Candeira s/n, 15782, Santiago de Compostela, La Coruña, Spain
*
* Corresponding author: Laboratorio de Parasitología, Instituto de Investigación y Análisis Alimentarios, c/Constantino Candeira s/n, 15782, Santiago de Compostela, La Coruña, Spain. E-mail: [email protected]

Summary

The proton-translocating inorganic pyrophosphatases (H+-PPases) are primary electrogenic H+ pumps that derive energy from the hydrolysis of inorganic pyrophosphate (PPi). They are widely distributed among most land plants and have also been found in several species of protozoan parasites. Here we describe, for the first time, the molecular cloning and functional characterization of a gene encoding an H+-pyrophosphatase in the protozoan scuticociliate parasite Philasterides dicentrarchi, which infects turbot. The predicted P. dicentrarchi PPase (PdPPase) consists of 587 amino acids of molecular mass 61·7 kDa and an isoelectric point of 5·0. Several motifs characteristic of plant vacuolar H+-PPases (V–H+-PPases) were also found in the PdPPase, which contains all the sequence motifs of the prototypical type I V–H+-PPase from Arabidopsis thaliana vacuolar pyrophosphatase type I (AVP1) plant. The PdPPase has a characteristic residue that determines strict K+-dependence, but unlike AVP1, PdPPase contains an N-terminal signal peptide (SP) sequence. Antibodies generated by vaccination of mice with a genetic or recombinant protein containing a partial sequence of the PdPPase and a common motif with the polyclonal antibody PABHK specific to AVP1 recognized a single band of about 62 kDa in western blots. These antibodies specifically stained both vacuole and the alveolar membranes of trophozoites of P. dicentrarchi. H+ transport was partially inhibited by the bisphosphonate pamidronate (PAM) and completely inhibited by NaF. The bisphosphonate PAM inhibited both H+-translocation and gene expression. PdPPase and PAM also inhibited in vitro growth of the ciliates. The apparent lack of V–H+-PPases in vertebrates and the parasite sensitivity to PPI analogues may provide a molecular target for developing new drugs to control scuticociliatosis.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Baltscheffsky, M., Schultz, A. and Baltscheffsky, H. (1999). H+-PPases: a tightly membrane-bound family. FEBS Letters 457, 527533.CrossRefGoogle ScholarPubMed
Baykov, A. A., Dubnova, E. B., Bakuleva, N. P., Evtushenko, O. A., Zhen, R. G. and Rea, P. A. (1993). Differential sensitivity of membrane-associated pyrophosphatases to inhibition by diphosphonates and fluoride delineates two classes of enzyme. FEBS Letters 327, 199202.CrossRefGoogle ScholarPubMed
Baykov, A. A., Kasho, V. N., Bakuleva, N. P. and Rea, P. A. (1994). Oxygen exchange reactions catalyzed by vacuolar H(+)-translocating pyrophosphatase. Evidence for reversible formation of enzyme-bound pyrophosphate. FEBS Letters 350, 323327.CrossRefGoogle ScholarPubMed
Baykov, A. A., Cooperman, B. S., Goldman, A. and Lahti, R. (1999). Cytoplasmic inorganic pyrophosphatase. Progress in Molecular and Subcellular Biology 23, 127150.CrossRefGoogle ScholarPubMed
Belogurov, G. A. and Lahti, R. (2002). A lysine substitute for K+. A460K mutation eliminates K+ dependence in H+-pyrophosphatase of Carboxydothermus hydrogenoformans . Journal of Biological Chemistry 277, 4965149654.CrossRefGoogle Scholar
Bender, A., van Dooren, G. G., Ralph, S. A., McFadden, G. I. and Scheider, G. (2003). Properties and prediction of mitochondrial transit peptides from Plasmodium falciparum . Molecular and Biochemical Parasitology 132, 5966.CrossRefGoogle ScholarPubMed
Bradford, M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein dye binding. Analytical Biochemistry 72, 248.CrossRefGoogle ScholarPubMed
Budiño, B., Lamas, J., Pata, M. P., Arranz, J. A., Sanmartín, M. L. and Leiro, J. (2011). Intraspecific variability in several isolates of Philasterides dicentrarchi (syn. Miamiensis avidus), a scuticociliate parasite of farmed turbot. Veterinary Parasitology 175, 260272.CrossRefGoogle ScholarPubMed
Bustin, S. A., Benes, V., Garson, J. A., Hellemans, J., Huggett, J., Kubista, M., Mueller, R., Nolan, T., Pfaffl, M. W., Shipley, G. L., Vandesompele, J. and Wittwer, C. T. (2009). The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments. Clinical Chemistry 55, 11622.CrossRefGoogle ScholarPubMed
Cooperman, B. S., Baykov, A. A. and Lathi, R. (1992). Evolutionary conservation of the active site of soluble inorganic pyrophosphatase. Trends in Biochemical Sciences 17, 262266.CrossRefGoogle ScholarPubMed
Docampo, R. and Moreno, S. N. (1999). Acidocalcisome: a novel Ca2+ storage compartment in trypanosomatids and apicomplexan parasites. Parasitology Today 15, 443448.CrossRefGoogle ScholarPubMed
Docampo, R. and Moreno, S. N. (2001). The acidocalcisome. Molecular and Biochemical Parasitology 114, 151159.CrossRefGoogle ScholarPubMed
Docampo, R. and Moreno, S. N. (2008). The acidocalcisome as a target for chemotherapeutic agents in protozoan parasites. Current Pharmaceutical Design 14, 882888.CrossRefGoogle ScholarPubMed
Drozdowicz, Y. M. and Rea, P. A. (2001). Vacuolar H+-pyrophosphatase from the evolutionary backwaters into the mainstream. Trends in Plant Science 6, 206211.CrossRefGoogle ScholarPubMed
Drozdowicz, Y. M., Lu, Y.-P., Patel, V., Fitz-Gibbon, S., Miller, J. H. and Rea, P. A. (1999). A thermostable vacuolar-type membrane pyrophosphatase from archeon Pyrobaculum aerophilum: implications for the origins of pyrophosphate-energized pumps. FEBS Letters 460, 505512.CrossRefGoogle Scholar
Drozdowicz, Y. M., Kissinger, J. C. and Rea, P. A. (2000). AVP2, a sequence-divergent, K+-insensitive H+-translocating inorganic pyrophosphatase from Arabidopsis . Plant Physiology 23, 353362.CrossRefGoogle Scholar
Drozdowicz, Y. M., Shaw, M., Nishi, M., Striepen, B., Liwinski, H. A., Roos, D. S. and Rea, P. A. (2003). Isolation and characterization of TgVP1, a type I vacuolar H+-translocating pyrophosphatase from Toxoplasma gondii. The dynamics of its subcellular localization and the cellular effects of a diphosphonate inhibitor. Journal of Biological Chemistry 278, 10751085.CrossRefGoogle ScholarPubMed
Emanuelsson, O., von Heijne, G. and Schneider, G. (2001). Analysis and prediction of mitochondrial targeting peptides. Methods in Cell Biology 65, 175187.CrossRefGoogle ScholarPubMed
Gaxiola, R. A., Palmgreen, M. G. and Schumacher, K. (2007). Plant proton pumps. FEBS Letters 581, 22042214.CrossRefGoogle ScholarPubMed
Gordon-Weeks, R., Parmar, S., Davies, T. G. and Leigh, R. A. (1999). Structural aspects of the effectiveness of bisphosphonates as competitive inhibitors of the plant vacuolar proton-pumping pyrophosphatase. Biochemical Journal 337, 373377.CrossRefGoogle ScholarPubMed
Hedlund, J., Cantoni, R., Baltscheffsky, M., Baltscheffsky, H. and Persson, B. (2006). Analysis of ancient sequence motifs in the H+-PPase family. FEBS Journal 273, 51835193.CrossRefGoogle ScholarPubMed
Hill, J. E., Scott, D. A., Luo, S. and Docampo, R. (2000). Cloning and functional expression of a gene encoding a vacuolar-type proton-translocating pyrophosphatase from Trypanosoma cruzi . Biochemical Journal 351, 281288.CrossRefGoogle ScholarPubMed
Hirono, M., Mimura, H., Nakanishi, Y. and Maeshima, M. (2005). Expression of functional Streptomyces coelicolor H+-pyrophosphatase and characterization of its molecular properties. Journal of Biochemistry 138, 183191.CrossRefGoogle ScholarPubMed
Iglesias, R., Paramá, A., Álvarez, M. F., Leiro, J., Fernández, J. and Sanmartín, M. L. (2001). Philasterides dicentrarchi (Ciliophora, Scuticociliatida) as the causative agent of scuticociliatosis in farmed turbot Scophthalmus maximus in Galicia (NW, Spain). Diseases of Aquatic Organisms 46, 4755.CrossRefGoogle ScholarPubMed
Iglesias, R., Paramá, A., Álvarez, M. F., Leiro, J., Aja, C. and Sanmartín, M. L. (2003). In vitro growth requirements for the fish pathogen Philasterides dicentrarchi (Ciliophora, Scuticociliatida). Veterinary Parasitology 111, 1930.CrossRefGoogle ScholarPubMed
Islam, M. K., Miyoshi, T., Yamada, M. and Tsuji, N. (2005). Pyrophosphatase of the roundworm Ascaris suum plays an essential role in the worm's molting and development. Infection and Immunity 73, 19952004.CrossRefGoogle ScholarPubMed
Karlsson, J. (1975). Membrane-bound potassium and magnesium ion-stimulated inorganic pyrophosphatase from roots and cotyledons of sugar beet (Beta vulgaris L). Biochimica and Biophysica Acta 399, 356363.CrossRefGoogle ScholarPubMed
Kiefer, F., Arnold, K., Künzli, M., Bordoli, L. and Schwede, T. (2009). The SWISS-MODEL repository and associated resources. Nucleic Acids Research 37, D387D392.CrossRefGoogle ScholarPubMed
Kim, E., Zhen, R.-G. and Rea, P. A. (1994). Heterologous expression of plant vacuolar pyrophosphatase in yeast demonstrates sufficiency of the substrate-binding subunit for proton transport. Proceedings of the National Academy Sciences USA 91, 61286132.CrossRefGoogle ScholarPubMed
Kornberg, A. (1962). On the metabolic significance of phosphorolytic and pyrophosphorolytic reactions. In Horizons in Biochemistry (ed. Kasha, M. and Pullman, B.), pp. 251264. Academic Press, Inc., New York, USA.Google Scholar
Leiro, J., Siso, M. I. G., Iglesias, R., Ubeira, F. M. and Sanmartín, M. L. (2002). Mouse antibody response to a microsporidian parasite following inoculation with a gene coding for parasite ribosomal RNA. Vaccine 20, 26482655.CrossRefGoogle ScholarPubMed
Leiro, J., Arranz, J. A., Paramá, A., Álvarez, M. F. and Sanmartín, M. L. (2004). In vitro effects of the polyphenols resveratrol, mangiferin and (-)- epigallocatechin-3-gallate on the scuticociliate fish pathogen Philasterides dicentrarchi . Diseases of Aquatic Organisms 59, 171174.CrossRefGoogle ScholarPubMed
Livak, K. J. and Schmittgen, T. D. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCq method. Methods 25, 402408.CrossRefGoogle Scholar
Long, A. R., Williams, L. E., Nelson, S. J. and Hall, J. L. (1995). Localization of membrane pyrophosphatase activity in Ricinus communis seedlings. Journal of Plant Physiology 146, 629638.CrossRefGoogle Scholar
Luo, S., Marchesini, N., Moreno, S. N. J. and Docampo, R. (1999). A plant-like vacuolar H+-pyrophosphatase in Plasmodium falciparum . FEBS Letters 460, 217220.CrossRefGoogle ScholarPubMed
Maddy, A. H. (1976). A critical evaluation of the analysis of membrane proteins by polyacrylamide gel electrophoresis in the presence of dodecyl sulfate. Journal of Theoretical Biology 62, 315326.CrossRefGoogle Scholar
Maeshima, M. (2000). Vacuolar H+-pyrophosphatase. Biochimica et Biophysica Acta 1465, 3751.CrossRefGoogle ScholarPubMed
Marchesini, N., Luo, S., Rodrigues, C. O., Moreno, S. N. and Docampo, R. (2000). Acidocalcisomes and vacuolar H+-pyrophosphatase in malaria parasites. Biochemical Journal 347, 243253.CrossRefGoogle ScholarPubMed
Martin, M. B., Grimley, J. S., Lewis, J. C., Health, H. T., Bailey, B. N., Kendrick, H., Yardley, V., Caldera, A., Lira, R., Urbina, J. A., Moreno, S. N., Docampo, R., Croft, S. L. and Oldfield, E. (2001). Bisphosphonates inhibit the growth of Trypanosoma brucei, Trypanosoma cruzi, Leishmania donovani, Toxoplasma gondii, and Plasmodium falciparum: a potential route to chemotherapy. Journal of Medicinal Chemistry 44, 909916.CrossRefGoogle ScholarPubMed
Martinez, R., Wang, Y., Benaim, G., Benchimol, M., de Souza, W., Scott, D. A. and Docampo, R. (2002). A proton pumping pyrophosphatase in the Golgi apparatus and plasma membrane vesicles of Trypanosoma cruzi . Molecular and Biochemical Parasitology 120, 205213.CrossRefGoogle ScholarPubMed
McIntosh, M. T. and Vaidya, A. B. (2002). Vacuolar type H+ pumping pyrophosphatases of parasitic protozoa. International Journal for Parasitology 32, 114.CrossRefGoogle ScholarPubMed
McIntosh, M. T., Drozdowicz, Y. M., Laroiya, K., Rea, P. A. and Vaidya, A. B. (2001). Two classes of plant-like vacuolar-type H+-pyrophosphatases in malaria parasites. Molecular and Biochemical Parasitology 114, 183195.CrossRefGoogle ScholarPubMed
Miranda, K., Docampo, R., Grillo, O., Franzen, A., Attias, M., Vercesi, A., Plattner, H., Hentschel, J. and de Souza, W. (2004). Dynamics of polymorphism of acidocalcisomes in Leishmania parasites . Histochemistry and Cell Biology 1121, 407418.CrossRefGoogle Scholar
Miranda, K., de Souza, W., Plattner, H., Hentschel, J., Kawazoe, U., Fang, J. and Moreno, S. N. (2008). Acidocalcisomes in apicomplexan parasites. Experimental Parasitology 118, 29.CrossRefGoogle ScholarPubMed
Montalvetti, A., Fernández, A., Sanders, J. M., Ghosh, S., Van Brussel, E., Oldfield, E. and Docampo, R. (2003). Farnesyl pyrophosphate synthase is an essential enzyme in Trypanosoma brucei. In vitro RNA interference and in vivo inhibition studies. Journal of Biological Chemistry 278, 1707517083.CrossRefGoogle ScholarPubMed
Nakanishi, Y., Saijo, T., Wada, Y. and Maeshima, M. (2001). Mutagenic analysis of functional residues in putative substrate-binding site and acidic domains of vacuolar H+-pyrophosphatase. Journal of Biological Chemistry 276, 76547660.CrossRefGoogle ScholarPubMed
Pace, D. A., Fang, J., Cintron, R., Docampo, M. D. and Moreno, S. N. (2011). Overexpression of a cytosolic pyrophosphatase (TgPPase) reveals a regulatory role of PP(i) in glycolysis for Toxoplasma gondii . Biochemical Journal 440, 229240.CrossRefGoogle Scholar
Paramá, A., Arranz, J. A., Álvarez, M. F., Sanmartín, M. L. and Leiro, J. (2006). Ultrastructure and phylogeny of Philasterides dicentrarchi (Ciliophora: Scuticociliatia) from farmed turbot in NW Spain. Parasitology 132, 555564.CrossRefGoogle ScholarPubMed
Peck, R. K. (1977). The ultrastructure of the somatic cortex of Pseudomicrothorax dubius: structure and function of the epiplasm in ciliated protozoa. Journal of Cell Science 25, 367385.CrossRefGoogle ScholarPubMed
Pérez-Castiñeira, J. R., López-Marqués, R. L., Losada, M. and Serrano, A. (2001). A thermostable K(+)-stimulated vacuolar-type pyrophosphatase from the hyperthermophilic bacterium Thermotoga maritima . FEBS Letters 496, 611.CrossRefGoogle ScholarPubMed
Pérez-Castiñeira, J. R., López-Marqués, R. L., Villalba, J. M., Losada, M. and Serrano, A. (2002 a). Functional complementation of yeast cytosolic pyrophosphatase by bacterial and plant H+-translocating pyrophosphatases. Proceedings of the National Academy Sciences USA 99, 1591415919.CrossRefGoogle ScholarPubMed
Pérez-Castiñeira, J. R., Alvar, J., Ruiz-Pérez, L. M. and Serrano, A. (2002 b). Evidence for a wide occurrence of proton-translocating pyrophosphatase genes in parasitic and free-living protozoa. Biochemical and Biophysical Research Communications 294, 567573.CrossRefGoogle ScholarPubMed
Petel, G. and Genraud, M. (1989). Localization in sucrose gradients of pyrophosphatase activities in the microsomal fractions of Jerusalem artichoke (Helianthus tuberosus L.) tubers. Journal of Plant Physiology 134, 466470.CrossRefGoogle Scholar
Piazzón, C., Lamas, J., Castro, R., Budiño, B., Cabaleiro, S., Sanmartín, M. L. and Leiro, J. (2008). Antigenic and cross-protection studies on two turbot scuticociliate isolates. Fish and Shellfish Immunology 25, 417424.CrossRefGoogle ScholarPubMed
Quevillon, E., Silventoinen, V., Pillai, S., Harte, N., Mulder, N., Apweiler, R. and López, R. (2005). InterProScan: protein domains identifier. Nucleic Acids Research 33, W116W120.CrossRefGoogle ScholarPubMed
Rea, P. A. and Poole, R. J. (1986). Chromatographic resolution of H+-translocating pyrophosphatase from H+-translocating ATPase of higher plant tonoplast. Plant Physiology 81, 126129.CrossRefGoogle ScholarPubMed
Rea, P. A. and Poole, R. J. (1993). Vacuolar H+-translocating pyrophosphatase. Annual Review of Plant Physiology and Plant Molecular Biology 44, 157180.CrossRefGoogle Scholar
Rea, P. A., Britten, C. J. and Sarafian, V. (1992 a). Common identity of substrate binding subunit of vacuolar H+-translocating inorganic pyrophosphatase of higher plant cells. Plant Physiology 100, 723732.CrossRefGoogle ScholarPubMed
Rea, P. A., Kim, Y., Sarafian, V., Poole, R. J., Davies, J. M. and Sanders, D. (1992 b). Vacuolar H+-translocating pyrophosphatases: a new category of ion translocase. Trends in Biochemical Sciences 17, 348353.CrossRefGoogle ScholarPubMed
Robinson, D. G., Haschke, H. P., Hinz, G., Hoh, B., Maeshima, M. and Marty, F. (1996). Immunological detection of tonoplast polypeptides in the plasma membrane of pea cotyledons. Planta 198, 95103.CrossRefGoogle Scholar
Rodan, G. A. (1998). Mechanisms of action of bisphosphonates. Annual Review of Pharmacology and Toxicology 38, 375388.CrossRefGoogle ScholarPubMed
Rodrigues, C. O., Scott, D. A. and Docampo, R. (1999 a). Presence of a vacuolar H+-pyrophosphatase in promastigotes of Leishmania donovani and its localization to a different compartment from the vacuolar H+-ATPase. Biochemical Journal 340, 759766.CrossRefGoogle ScholarPubMed
Rodrigues, C. O., Scott, D. A. and Docampo, R. (1999 b). Characterization of a vacuolar pyrophosphatase in Trypanosoma brucei and its localization to acidocalcisomes. Molecular and Cellular Biology 19, 77127723.CrossRefGoogle ScholarPubMed
Rodrigues, C. O., Scott, D. A., de Souza, W., Benchimol, M., Urbina, J. A., Oldfield, E. and Moreno, S. (2000). Vacuolar proton pyrophosphatase activity (PPi) in Toxoplasma gondii as possible chemotherapeutic targets. Biochemical Journal 349, 737745.CrossRefGoogle ScholarPubMed
Rogers, M. J., Gordon, S., Benford, H. L., Coxon, F. P., Luckman, S. P., Monkkonen, J. and Frith, J. C. (2000). Cellular and molecular mechanisms of action of bisphosphonates. Cancer 88, 29612978.3.0.CO;2-L>CrossRefGoogle ScholarPubMed
Russell, R. G. and Rogers, M. J. (1999). Bisphosphonates: from the laboratory to the clinic and back again. Bone 25, 97106.CrossRefGoogle Scholar
Schöcke, L. and Schink, B. (1998). Membrane-bound proton-translocating pyrophosphatase of Syntrophus gentianae, a snytrophycally benzoate-degrading fermenting bacterium. European Journal of Biochemistry 256, 589594.CrossRefGoogle ScholarPubMed
Scott, D. A., de Souza, W., Benchimol, M., Zhong, L., Lu, H. G., Moreno, S. N. and Docampo, R. (1998). Presence of a plant-like proton-pumping pyrophosphatase in acidocalcisomes of Trypanosoma cruzi . Journal of Biological Chemistry 273, 2215122158.CrossRefGoogle ScholarPubMed
Sen, S. S., Bhuyan, N. R. and Bera, T. (2009). Characterization of plasma membrane bound inorganic pyrophosphatase from Leishmania donovani promastigotes and amastigotes. African Health Sciences 9, 212217.Google ScholarPubMed
Serrano, A., Pérez-Castiñeira, J. R., Baltscheffsky, M. and Baltscheffsky, H. (2007). H+-PPases yesterday, today and tomorrow. IUBMB Life 59, 7683.CrossRefGoogle ScholarPubMed
Seufferheld, M., Lea, C. R., Vieira, M., Oldfield, E. and Docampo, R. (2004). The H+-pyrophosphatase of Rhodospirillum rubrum is predominantly located in polyphosphate-rich acidocalcisomes. Journal of Biological Chemistry 279, 5119351202.CrossRefGoogle ScholarPubMed
Shen, H.-B. and Chou, K.-C. (2007). Signal-3L: a 3-layer approach for predicting signal peptides. Biochemical and Biophysical Research Communications 363, 297303.CrossRefGoogle ScholarPubMed
Sievers, F., Wilm, A., Dineen, D., Gibson, T. J., Karplus, K., Li, W., López, R., McWilliam, H., Remmert, M., Söding, J., Thompson, J. D. and Higgins, D. G. (2011). Fast, scalable generation of high-quality protein multiple sequence alignments using ClustalOmega. Molecular Systems Biology 7, 539.CrossRefGoogle Scholar
Staiger, C., Hinneburg, A. and Klösgen, R. B. (2009). Diversity in degrees of freedom of mitochondrial transit peptides. Molecular Biology and Evolution 26, 17731780.CrossRefGoogle ScholarPubMed
Suzuki, Y., Yasunaga, T., Ohkura, R., Wakabayashi, T. and Sutoh, K. (1998). Swing of the lever arm of a myosin motor at the isomerization and phosphate-release steps. Nature 396, 380383.CrossRefGoogle ScholarPubMed
Szabo, C. M. and Oldfield, E. (2001). An investigation of bisphosphonate inhibition of a vacuolar proton-pumping pyrophosphatase. Biochemical and Biophysical Research Communications 287, 468473.CrossRefGoogle ScholarPubMed
Szajnman, S. H., Rosso, V. S., Malayil, L., Smith, A., Moreno, S. N., Docampo, R. and Rodriguez, J. B. (2012). 1-(Fluoroalkylidene)-1,1-bisphosphonic acids are potent and selective inhibitors of the enzymatic activity of Toxoplasma gondii farnesyl pyrophosphate synthase. Organic and Biomolecular Chemistry 10, 14241433.CrossRefGoogle ScholarPubMed
Takasu, A., Nakanishi, Y., Yamauchi, T. and Maeshima, M. (1997). Analysis of the substrate binding site and carboxyl terminal region of vacuolar H+-pyrophosphatase of mung bean with peptide antibodies. The Journal of Biochemistry 122, 883889.CrossRefGoogle ScholarPubMed
Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M. and Kumar, S. (2011). MEGA 5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Molecular Biology and Evolution 28, 27312739.CrossRefGoogle ScholarPubMed
Tonkin, C. J., Roos, D. S. and McFadden, G. I. (2006). N-terminal positively charged amino acids, but not their exact position, are important for apicoplast transit peptide fidelity in Toxoplasma gondii . Molecular and Biochemical Parasitology 150, 192200.CrossRefGoogle Scholar
Van Beek, E., Pieterman, E., Cohen, L., Löwik, C. and Papapoulus, S. (1999). Nitrogen-containing bisphosphonates inhibit isopentenyl pyrophosphate isomerase/farnesyl pyrophosphate synthase activity with relative potencies corresponding to their antiresorptive potencies in vitro and in vivo . Biochemical and Biophysical Research Communications 255, 491494.CrossRefGoogle ScholarPubMed
Wang, Y., Jin, S., Wang, M., Zhu, L. and Zhang, X. (2013). Isolation and characterization of a conserved domain in the Eremophyte H+-PPase family. PLoS ONE 8, e70099.Google ScholarPubMed
Woo, P. T. K. (1987). Immune response of fish to parasitic protozoa. Trends in Parasitology 3, 186188.Google Scholar
Xie, Y., Chen, S., Yan, Y., Zhang, Z., Li, D., Yu, H., Wang, C., Nong, X., Zhou, X., Gu, X., Wang, S., Peng, X. and Yang, G. (2013). Potential of recombinant inorganic pyrophosphatase antigen as a new vaccine candidate against Baylisascaris schroederi in mice. Veterinary Research 44, 90.CrossRefGoogle ScholarPubMed
Zdobnov, E. M. and Apweiler, R. (2001). InterProScan –- an intregration platform for the signature-recognition methods in InterPro. Bioinformatics 17, 847848.CrossRefGoogle Scholar
Zhen, R. G., Baykov, A. A., Bakuleva, N. P. and Rea, P. A. (1994). Aminomethylenediphosphonate: a potent type-specific inhibitor of both plant and phototrophic bacterial H+-pyrophosphatases. Plant Physiology 104, 153159.CrossRefGoogle ScholarPubMed
Zhen, R. G., Kim, E. J. and Rea, P. (1997). The molecular and biochemical basis of pyrophosphatase-energized proton translocation at the vacuolar membrane. Advances in Botanical Research 25, 297337.CrossRefGoogle Scholar