Hostname: page-component-586b7cd67f-dsjbd Total loading time: 0 Render date: 2024-11-23T03:31:15.434Z Has data issue: false hasContentIssue false

Preferential infection of dividing cells by Cryptosporidium parvum

Published online by Cambridge University Press:  20 April 2006

G. WIDMER
Affiliation:
Tufts Cummings School of Veterinary Medicine, Division of Infectious Diseases, 200 Westboro Road, North Grafton, MA 01536, USA
Y. L. YANG
Affiliation:
Tufts Cummings School of Veterinary Medicine, Division of Infectious Diseases, 200 Westboro Road, North Grafton, MA 01536, USA
R. BONILLA
Affiliation:
Tufts Cummings School of Veterinary Medicine, Division of Infectious Diseases, 200 Westboro Road, North Grafton, MA 01536, USA
S. TANRIVERDI
Affiliation:
Tufts Cummings School of Veterinary Medicine, Division of Infectious Diseases, 200 Westboro Road, North Grafton, MA 01536, USA
K.M. CIOCIOLA
Affiliation:
Tufts Cummings School of Veterinary Medicine, Division of Infectious Diseases, 200 Westboro Road, North Grafton, MA 01536, USA Present address: Genzyme Corporation, Pharmacogenetics Department, Box 9322 Framingham, MA 01701-9322, USA.

Abstract

In spite of its limitations, the culture of Cryptosporidium parvum in monolayers of epithelial cells is a suitable model to study the interaction of this protozoan parasite with the host cell, to assay oocyst infectivity, and to screen drugs for anti-cryptosporidial activity. For unknown reasons, growth of Cryptosporidium in culture is limited in time and generally does not lead to the production of significant numbers of oocysts. In monolayers infected with high doses of oocysts, we observed that many cells remain uninfected, suggesting that some cells are less susceptible to the infection. Since C. parvum and the related species C. hominis lack many essential biosynthetic pathways, we tested whether the dependence of the parasite on host cell metabolites may favour the infection of cells in mitosis. The proportion of monolayer cells in stationary (G0/G1) phase and in mitosis (S/G2/M) was determined and the prevalence of infected cells in each subpopulation was quantified. Although C. parvum infects and develops in dividing and stationary cells, a significant preference for cells in S/G2/M phase was observed. Consistent with previous observations showing that C. parvum induces apoptosis in cell monolayers, infection was accompanied by a significant increase in the proportion of mitotic cells.

Type
Research Article
Copyright
2006 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Abrahamsen, M. S., Templeton, T. J., Enomoto, S., Abrahante, J. E., Zhu, G., Lancto, C. A., Deng, M., Liu, C., Widmer, G., Tzipori, S., Buck, G. A., Xu, P., Bankier, A. T., Dear, P. H., Konfortov, B. A., Spriggs, H. F., Iyer, L., Anantharaman, V., Aravind, L. and Kapur, V. ( 2004). Complete genome sequence of the apicomplexan, Cryptosporidium parvum. Science 304, 441445.CrossRefGoogle Scholar
Buret, A. G., Chin, A. C. and Scott, K. G. ( 2003). Infection of human and bovine epithelial cells with Cryptosporidium andersoni induces apoptosis and disrupts tight junctional ZO-1: effects of epidermal growth factor. International Journal for Parasitology 33, 13631371.CrossRefGoogle Scholar
Chen, X. M., Levine, S. A., Tietz, P., Krueger, E., McNiven, M. A., Jefferson, D. M., Mahle, M. and LaRusso, N. F. ( 1998). Cryptosporidium parvum is cytopathic for cultured human biliary epithelia via an apoptotic mechanism. Hepatology 28, 906913.CrossRefGoogle Scholar
Cikes, M. and Friberg, S. Jr. ( 1971). Expression of H-2 and Moloney leukemia virus-determined cell-surface antigens in synchronized cultures of a mouse cell line. Proceedings of the National Academy of Sciences, USA 68, 566569.CrossRefGoogle Scholar
Current, W. L. and Haynes, T. B. ( 1984). Complete development of Cryptosporidium in cell culture. Science 224, 603605.CrossRefGoogle Scholar
Current, W. L. and Reese, N. C. ( 1986). A comparison of endogenous development of three isolates of Cryptosporidium in suckling mice. Journal of Protozoology 33, 98108.CrossRefGoogle Scholar
Dvorak, J. A. and Crane, M. S. ( 1981). Vertebrate cell cycle modulates infection by protozoan parasites. Science 214, 10341036.CrossRefGoogle Scholar
Feng, X., Rich, S. M., Tzipori, S. and Widmer, G. ( 2002). Experimental evidence for genetic recombination in the opportunistic pathogen Cryptosporidium parvum. Molecular and Biochemical Parasitology 119, 5562.CrossRefGoogle Scholar
Griffiths, J. K., Moore, R., Dooley, S., Keusch, G. T. and Tzipori, S. ( 1994). Cryptosporidium parvum infection of Caco-2 cell monolayers induces an apical monolayer defect, selectively increases transmonolayer permeability, and causes epithelial cell death. Infection and Immunity 62, 45064514.Google Scholar
Hijjawi, N. S., Meloni, B. P., Morgan, U. M. and Thompson, R. C. ( 2001). Complete development and long-term maintenance of Cryptosporidium parvum in human and cattle genotypes in cell culture. International Journal for Parasitology 31, 10481055.CrossRefGoogle Scholar
McCole, D. F., Eckmann, L., Laurent, F. and Kagnoff, M. F. ( 2000). Intestinal epithelial cell apoptosis following Cryptosporidium parvum infection. Infection and Immunity 68, 17101713.CrossRefGoogle Scholar
Mele, R., Gomez Morales, M. A., Tosini, F. and Pozio, E. ( 2004). Cryptosporidium parvum at different developmental stages modulates host cell apoptosis in vitro. Infection and Immunity 72, 60616067.CrossRefGoogle Scholar
Ojcius, D. M., Perfettini, J. L., Bonnin, A. and Laurent, F. ( 1999). Caspase-dependent apoptosis during infection with Cryptosporidium parvum. Microbes and Infection. 1, 11631168.CrossRefGoogle Scholar
Okhuysen, P. C., Rich, S. M., Chappell, C. L., Grimes, K. A., Widmer, G., Feng, X. and Tzipori, S. ( 2002). Infectivity of a Cryptosporidium parvum isolate of cervine origin for healthy adults and interferon-gamma knockout mice. Journal of Infectious Diseases 185, 13201325.CrossRefGoogle Scholar
Reyero, C. and Waksman, B. H. ( 1980). Cell cycle-dependent expression of surface antigens in murine T-lymphoma cells. II. Murine leukemia virus gp70 increases in S phase. Experimental Cell Research 130, 275280.Google Scholar
Rosales, M. J., Cifuentes, J. and Mascaro, C. ( 1993). Cryptosporidium parvum: culture in MDCK cells. Experimental Parasitology 76, 209212.CrossRefGoogle Scholar
Rosenblatt, J., Raff, M. C. and Cramer, L. P. ( 2001). An epithelial cell destined for apoptosis signals its neighbors to extrude it by an actin- and myosin-dependent mechanism. Current Biology 11, 18471857.CrossRefGoogle Scholar
Sasahara, T., Maruyama, H., Aoki, M., Kikuno, R., Sekiguchi, T., Takahashi, A., Sato, Y., Kitasato, H., Takayama, Y. and Inoue, M. ( 2003). Apoptosis of intestinal crypt epithelium after Cryptosporidium parvum infection. Journal of Infection and Chemotherapy. 9, 278281.CrossRefGoogle Scholar
Stephens, J., Cosyns, M., Jones, M. and Hayward, A. ( 1999). Liver and bile duct pathology following Cryptosporidium parvum infection of immunodeficient mice. Hepatology 30, 2735.CrossRefGoogle Scholar
Striepen, B., Pruijssers, A. J., Huang, J., Li, C., Gubbels, M. J., Umejiego, N. N., Hedstrom, L. and Kissinger, J. C. ( 2004). Gene transfer in the evolution of parasite nucleotide biosynthesis. Proceedings of the National Academy of Sciences, USA 101, 31543159.CrossRefGoogle Scholar
Tanriverdi, S. and Widmer, G. ( 2006). Differential evolution of repetitive sequences in Cryptosporidium parvum and Cryptosporidium hominis. Infection Genetics and Evolution 6, 113122.CrossRefGoogle Scholar
Terasima, T. and Tolmach, L. J. ( 1963). Growth and nucleic acid synthesis in synchronously dividing populations of HeLa cells. Experimental Cell Research 30, 344362.CrossRefGoogle Scholar
Theodos, C. M., Griffiths, J. K., D'Onfro, J., Fairfield, A. and Tzipori, S. ( 1998). Efficacy of nitazoxanide against Cryptosporidium parvum in cell culture and in animal models. Antimicrobial Agents and Chemotherapy 42, 19591965.Google Scholar
Tzipori, S. ( 1988). Cryptosporidiosis in perspective. Advances in Parasitology 27, 63129.CrossRefGoogle Scholar
Upton, S. J. ( 1997). In vitro cultivation. In Cryptosporidium and Cryptosporidiosis ( ed. Fayer, R.), pp. 181207. CRC, Boca Raton, Florida.
Upton, S. J. and Brillhart, D. B. ( 1994). Comparative development of Cryptosporidium parvum in MDBK and HCT-8 cells under select atmospheres. Biomedical Letters 49, 265271.Google Scholar
Upton, S. J., Tilley, M. and Brillhart, D. B. ( 1994). Comparative development of Cryptosporidium parvum (Apicomplexa) in 11 continuous host cell lines. FEMS Microbiology Letters 118, 233236.CrossRefGoogle Scholar
Villacorta, I., de Graaf, D., Charlier, G. and Peeters, J. E. ( 1996). Complete development of Cryptosporidium parvum in MDBK cells. FEMS Microbiology Letters 142, 129132.CrossRefGoogle Scholar
Wersto, R. P., Chrest, F. J., Leary, J. F., Morris, C., Stetler-Stevenson, M. A. and Gabrielson, E. ( 2001). Doublet discrimination in DNA cell-cycle analysis. Cytometry 46, 296306.CrossRefGoogle Scholar
Widmer, G., Corey, E. A., Stein, B., Griffiths, J. K. and Tzipori, S. ( 2000). Host cell apoptosis impairs Cryptosporidium parvum development in vitro. Journal of Parasitology 86, 922928.CrossRefGoogle Scholar
Xu, P., Widmer, G., Wang, Y., Ozaki, L. S., Alves, J. M., Serrano, M. G., Puiu, D., Manque, P., Akiyoshi, D., Mackey, A. J., Pearson, W. R., Dear, P. H., Bankier, A. T., Peterson, D. L., Abrahamsen, M. S., Kapur, V., Tzipori, S. and Buck, G. A. ( 2004). The genome of Cryptosporidium hominis. Nature, Genetics 431, 11071112.CrossRefGoogle Scholar
Yang, S., Healey, M. C., Du, C. and Zhang, J. ( 1996). Complete development of Cryptosporidium parvum in bovine fallopian tube epithelial cells. Infection and Immunity 64, 349354.Google Scholar