Hostname: page-component-586b7cd67f-dsjbd Total loading time: 0 Render date: 2024-11-22T12:20:33.771Z Has data issue: false hasContentIssue false

A preface on advances in diagnostics for infectious and parasitic diseases: detecting parasites of medical and veterinary importance

Published online by Cambridge University Press:  21 November 2014

J. RUSSELL STOTHARD*
Affiliation:
Department of Parasitology, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK
EMILY ADAMS
Affiliation:
Department of Parasitology, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK
*
*Corresponding author: Department of Parasitology, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK. E-mail: [email protected]

Summary

There are many reasons why detection of parasites of medical and veterinary importance is vital and where novel diagnostic and surveillance tools are required. From a medical perspective alone, these originate from a desire for better clinical management and rational use of medications. Diagnosis can be at the individual-level, at close to patient settings in testing a clinical suspicion or at the community-level, perhaps in front of a computer screen, in classification of endemic areas and devising appropriate control interventions. Thus diagnostics for parasitic diseases has a broad remit as parasites are not only tied with their definitive hosts but also in some cases with their vectors/intermediate hosts. Application of current diagnostic tools and decision algorithms in sustaining control programmes, or in elimination settings, can be problematic and even ill-fitting. For example in resource-limited settings, are current diagnostic tools sufficiently robust for operational use at scale or are they confounded by on-the-ground realities; are the diagnostic algorithms underlying public health interventions always understood and well-received within communities which are targeted for control? Within this Special Issue (SI) covering a variety of diseases and diagnostic settings some answers are forthcoming. An important theme, however, throughout the SI is to acknowledge that cross-talk and continuous feedback between development and application of diagnostic tests is crucial if they are to be used effectively and appropriately.

Type
Special Issue Article
Copyright
Copyright © Cambridge University Press 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Adams, E., Gomez, M. A., Scheske, L., Rios, R., Marquez, R., Cossio, A., Albertini, A., Schallig, H. and Saravia, N. (2014). Sensitive diagnosis of cutaneous leishmaniasis by lesion swab sampling coupled to qPCR. Parasitology 141, 18911897.Google Scholar
Al Saleem, W. and Acosta-Serrano, A. (2014). Detection of high levels of anti-alpha-galactosyl antibodies in sera of patients with Old World cutaneous leishmaniasis: a possible tool for diagnosis and biomarker for cure in an elimination setting. Parasitology 141, 18981903.CrossRefGoogle Scholar
Ansah, E. K., Narh-Bana, S., Epokor, M., Akanpigbiam, S., Quartey, A. A., Gyapong, J. and Whitty, C. J. M. (2010). Rapid testing for malaria in settings where microscopy is available and peripheral clinics where only presumptive treatment is available: a randomised controlled trial in Ghana. British Medical Journal 340, c390.Google Scholar
Baiden, F., Webster, J., Owusu-Agyei, S. and Chandramohan, D. (2011). Would rational use of antibiotics be compromised in the era of test-based management of malaria? Tropical Medicine and International Health 16, 142144.CrossRefGoogle ScholarPubMed
Baiden, F., Webster, J., Tivura, M., Delimini, R., Berko, Y., Amenga-Etego, S., Agyeman-Budu, A., Karikari, A. B., Bruce, J., Owusu-Agyei, S. and Chandramohan, D. (2012). Accuracy of rapid tests for malaria and treatment outcomes for malaria and non-malaria cases among under-five children in rural Ghana. PLoS One 7, e34073.Google ScholarPubMed
Banoo, S., Bell, D., Bossuyt, P., Herring, A., Mabey, D., et al. (2006). Evaluation of diagnostic tests for infectious diseases: general principles. Nature Reviews. Microbiology 4, S21S31.Google Scholar
Bergquist, R., Johansen, M. V. and Utzinger, J. (2009). Diagnostic dilemmas in helminthology: what tools to use and when? Trends in Parasitology 25, 151156.Google Scholar
Betson, M., Sousa-Figueiredo, J. C., Atuhaire, A., Arinaitwe, M., Adriko, M., Mwesigwa, G., Nabonge, J., Kabatereine, N. B., Sutherland, C. J. and Stothard, J. R. (2014). Detection of persistent Plasmodium spp. infections in Ugandan children after artemether-lumefantrine treatment. Parasitology 141, 18801890.Google Scholar
Bisoffi, Z., Gobbi, F., Angheben, A. and Van den Ende, J. (2009). The role of rapid diagnostic tests in managing malaria. PLoS Medicine 6, e1000063.Google Scholar
Bogoch, I., Coulibaly, J., Andrews, J., Speich, B., Keiser, J., Stothard, J. R., N'Goran, E. and Utzinger, J. (2014). Evaluation of portable microscopic devices for the diagnosis of Schistosoma and soil-transmitted helminth infection. Parasitology 141, 18111818.Google Scholar
Caliendo, A. M., Gilbert, D. N., Ginocchio, C. C., Hanson, K. E., May, L., Quinn, T. C., Tenover, F. C., Alland, D., Blaschke, A. J., Bonomo, R. A., Carroll, K. C., Ferraro, M. J., Hirschhorn, R., Joseph, W. P., Karchmer, T., MacIntyre, A. T., Reller, L. B., Jackson, A. F. and IDSA (2013). Better tests, better care: improved diagnostics for infectious diseases. Clinical Infectious Diseases 57, S139S170.Google Scholar
Charlier, J., van der Voort, M., Kenypon, F., Skuc, P. and Vercruysse, J. (2014) Chasing helminths and their economic impact on farmed ruminants. Trends in Parasitology 30, 361367.CrossRefGoogle ScholarPubMed
Chiodini, P. L. (2014). Malaria diagnostics. Parasitology 141, 18731879.CrossRefGoogle ScholarPubMed
Corstjens, P., de Dood, C., Kornelis, D., Tjon Kon Fat, E., Wilson, A. R., Kariuki, T., Nyakundi, R., LoVerde, P., Abrams, W., Tanke, H., Leishout, L., Deelder, A. and Van Dam, G. J. (2014). Tools for diagnosis, monitoring and screening of Schistosoma infections utilizing lateral-flow based assays and upconverting phosphor labels. Parasitology 141, 18411855.Google Scholar
Counihan, H., Harvey, S. A., Sekeseke-Chinyama, M., Hamainza, B., Banda, R., Malambo, T., Masaninga, F. and Bell, D. (2012). Community health workers use malaria rapid diagnostic tests (RDTs) safely and accurately: results of a longitudinal study in Zambia. American Journal of Tropical Medicine and Hygiene 87, 5763.Google Scholar
Cringoli, G., Rinaldi, L., Albonico, M., Bergquist, R. and Utzinger, J. (2013). Geospatial (s)tools: integration of advanced epidemiological sampling and novel diagnostics. Geospatial Health 7, 399404.Google Scholar
Dye, C. (2014). After 2015: infectious diseases in a new era of health and development. Philosophical Transactions of the Royal Society B: Biological Sciences 369, 20130426.CrossRefGoogle Scholar
Everett, D. B., Baisely, K. J., McNerney, R., Hambleton, I., Chirwa, T., Ross, D. A., Changalucha, J., Watson-Jones, D., Helmby, H., Dunne, D. W., Mabey, D. and Hayes, R. J. (2010). Association of schistosomiasis with false-positive HIV test results in an African adolescent population. Journal of Clinical Microbiology 48, 15701577.Google Scholar
FIND, TDR and WHO (2011). Malaria Rapid Diagnostic Test Performance. Results of WHO Product Testing of Malaria RDTs: Round 3 (2010–2011). WHO, Geneva.Google Scholar
Foster, D., Cox-Singh, J., Mohamad, D. S. A., Krishna, S., Chin, P. P. and Singh, B. (2014). Evaluation of three rapid diagnostic tests for the detection of human infections with Plasmodium knowlesi. Malaria Journal 13, 60.CrossRefGoogle ScholarPubMed
Gasasira, A. F., Dorsey, G., Kamya, M. R., Havlir, D., Kiggundu, M., Rosenthal, P. J. and Charlebois, E. D. (2006). False-positive results of enzyme immunoassays for human immunodeficiency virus in patients with uncomplicated malaria. Journal of Clinical Microbiology 44, 30213024.Google Scholar
Geldhof, P., Vlaminck, J., Levecke, B. and Vercruysse, J. (2014). Advancements in the diagnosis of Ascaris suum infections in pigs and their possible applications in humans. Parasitology 141, 19041911.Google Scholar
Githinji, S., Kigen, S., Memusi, D., Nyandigisi, A., Mbithi, A. M., Wamari, A., Muturi, A. N., Jagoe, G., Barrington, J., Snow, R. W. and Zurovac, D. (2013). Reducing stock-outs of life saving malaria commodities using mobile phone text-messaging: SMS for life study in Kenya. PLoS One 8, e54066.Google Scholar
Harhay, M. O. and King, C. H. (2012). Global burden of disease in young people aged 10–24 years. Lancet 379, 2728.Google Scholar
Hopkins, H., Gonzalez, I. J., Polley, S. D., Angutoko, P., Ategeka, J., Asiimwe, C., Agaba, B., Kyabayinze, D. J., Sutherland, C. J., Perkins, M. D. and Bell, D. (2013). Highly sensitive detection of malaria parasitemia in a malaria-endemic setting: performance of a new loop-mediated isothermal amplification kit in a remote clinic in Uganda. Journal of Infectious Diseases 208, 645652.Google Scholar
Koita, O. A., Doumbo, O. K., Ouattara, A., Tall, L. K., Konare, A., Diakite, M., Diallo, M., Sagara, I., Masinde, G. L., Doumbo, S. N., Dolo, A., Tounkara, A., Traore, I. and Krogstad, D. J. (2012). False-negative rapid diagnostic tests for malaria and deletion of the histidine-rich repeat region of the HRP2 gene. American Journal of Tropical Medicine and Hygiene 86, 194198.CrossRefGoogle ScholarPubMed
Kumar, N., Pande, V., Bhatt, R. M., Shah, N. K., Mishra, N., Srivastava, B., Valecha, N. and Anvikar, A. R. (2013). Genetic deletion of HRP2 and HRP3 in Indian Plasmodium falciparum population and false negative malaria rapid diagnostic test. Acta Tropica 125, 119121.Google Scholar
Lammie, P. J., Moss, D. M., Goodhew, E. B., Hamlin, K., Krolewiecki, A., West, S. K. and Priest, J. W. (2012). Development of a new platform for neglected tropical disease surveillance. International Journal for Parasitology 42, 797800.CrossRefGoogle ScholarPubMed
Langley, I., Adams, E., Doulla, B. and Squire, B. S. (2014). Operational modelling to guide implementation and scale-up of diagnostic tests within the health system: exploring opportunities for parasitic disease diagnostics based on example application for tuberculosis. Parasitology 141, 17951802.CrossRefGoogle ScholarPubMed
Levecke, B., Brooker, S., Knopp, S., Steinmann, P., Sousa-Figueiredo, J. C., Stothard, J. R., Utzinger, J. and Vercruysse, J. (2014). Effect of sampling and diagnostic effort on the assessment of schistosomiasis and soil-transmitted helminthiasis and drug efficacy: a meta-analysis of six drug efficacy trials and one epidemiological survey. Parasitology 141, 18261840.CrossRefGoogle ScholarPubMed
Lipkin, W. I. (2013). The changing face of pathogen discovery and surveillance. Nature Reviews Microbiology 11, 133141.Google Scholar
Mabey, D., Peeling, R. W., Ustianowski, A. and Perkins, M. D. (2004). Diagnostics for the developing world. Nature Reviews Microbiology 2, 231240.Google Scholar
Maltha, J., Gamboa, D., Bendezu, J., Sanchez, L., Cnops, L., Gillet, P. and Jacobs, J. (2012). Rapid diagnostic tests for malaria diagnosis in the Peruvian Amazon: impact of pfhrp2 gene deletions and cross-reactions. PLoS One 7, e43094.CrossRefGoogle ScholarPubMed
Mas-Coma, S., Bargues, M. D. and Valero, M. A. (2014). Diagnosis of human fascioliasis by stool and blood techniques: update for the present global scenario. Parasitology 141, 19181946.Google Scholar
McArthur, J. (1971). McArthur microscope – Open University model. Transactions of the Royal Society of Tropical Medicine and Hygiene 65, 438.Google Scholar
McArthur, J. (1984). Range of accessories for the McArthur-microscope. Transactions of the Royal Society of Tropical Medicine and Hygiene 78, 274274.Google Scholar
Mosha, J. F., Conteh, L., Tediosi, F., Gesase, S., Bruce, J., Chandramohan, D. and Gosling, R. (2010). Cost implications of improving malaria diagnosis: findings from North-Eastern Tanzania. PLoS One 5, e8707.CrossRefGoogle ScholarPubMed
Murray, C. J. L., Vos, T., Lozano, R., Naghavi, M., Flaxman, A. D., Michaud, C., Ezzati, M., Shibuya, K., Salomon, J. A., Abdalla, S., Aboyans, V., Abraham, J., Ackerman, I., Aggarwal, R., Ahn, S. Y., Ali, M. K., Alvarado, M., Anderson, H. R., Anderson, L. M., Andrews, K. G., Atkinson, C., Baddour, L. M., Bahalim, A. N., Barker-Collo, S., Barrero, L. H., Bartels, D. H., Basanez, M. G., Baxter, A., Bell, M. L., Benjamin, E. J., et al. (2012). Disability-adjusted life years (DALYs) for 291 diseases and injuries in 21 regions, 1990–2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet 380, 21972223.Google Scholar
Pallen, M. (2014). Diagnostic metagenomics: potential applications to bacterial, viral and parasitic infections. Parasitology 141, 18561862.Google Scholar
Peeling, R. W. and Mabey, D. (2010). Point-of-care tests for diagnosing infections in the developing world. Clinical Microbiology and Infection 16, 10621069.CrossRefGoogle ScholarPubMed
Peeling, R. W. and Mabey, D. (2014). Diagnostics for the control and elimination of neglected tropical diseases. Parasitology 141, 17891794.Google Scholar
Polley, S. D., Gonzalez, I. J., Mohamed, D., Daly, R., Bowers, K., Watson, J., Mewse, E., Armstrong, M., Gray, C., Perkins, M. D., Bell, D., Kanda, H., Tomita, N., Kubota, Y., Mori, Y., Chiodini, P. L. and Sutherland, C. J. (2013). Clinical evaluation of a loop-mediated amplification kit for diagnosis of imported malaria. Journal of Infectious Diseases 208, 637644.CrossRefGoogle ScholarPubMed
Rinaldi, L. and Gringoli, G. (2014). Exploring the interface between diagnostics and maps of neglected parasitic disease. Parasitology 141, 18031810.Google Scholar
Solomon, A. W., Engels, D., Bailey, R. L., Blake, I. M., Brooker, S., Chen, J.-X., Chen, J.-H., Churcher, T. S., Drakeley, C. J., Edwards, T., Fenwick, A., French, M., Gabrielli, A. F., Grassly, N. C., Harding-Esch, E. M., Holland, M. J., Koukounari, A., Lammie, P. J., Leslie, J., Mabey, D. C., Rhajaoui, M., Secor, W. E., Stothard, J. R., Wei, H., Willingham, A. L., Zhou, X.-N. and Peeling, R. W. (2012). A diagnostics platform for the integrated mapping, monitoring, and surveillance of neglected tropical diseases: rationale and target product profiles. PLoS Neglected Tropical Diseases 6, e1746.Google Scholar
Rebollo, M. and Bockarie, M. J. (2014). Shrinking the lymphatic filariasis map: update on diagnostic tools for mapping and transmission monitoring. Parasitology 141, 19121917.Google Scholar
Stothard, J. R. (2009). Improving control of African schistosomiasis: towards effective use of rapid diagnostic tests within an appropriate disease surveillance model. Transactions of the Royal Society of Tropical Medicine and Hygiene 103, 325332.CrossRefGoogle ScholarPubMed
Stothard, J. R., Nabette, B., Sousa-Figueiredo, J. C. and Kabatereine, N. B. (2014 a). Towards malaria microscopy at the point-of-contact: an assessment of the diagnostic performance of the Newton Nm1 microscope in Uganda. Parasitology 141, 18191825.CrossRefGoogle ScholarPubMed
Stothard, J. R., Stanton, M. C., Bustinduy, A. L., Sousa-Figueiredo, J. C., Van Dam, G. J., Betson, M., Waterhouse, D., Ward, S., Allan, F., Hassan, A. A., AlHelal, M. A., Memish, Z. A. and Rollinson, D. (2014 b). Diagnostics for schistosomiasis in Africa and Arabia: a review of present options in control and future needs for elimination. Parasitology 141, 19471961.Google Scholar
Tambo, E., Ai, L., Zhou, X., Chen, J.-H., Hu, W., Bergquist, R., Guo, J.-G., Utzinger, J., Tanner, M. and Zhou, X.-N. (2014). Surveillance-response systems: the key to elimination of tropical diseases. Infectious Diseases of Poverty 3, 17.Google Scholar
Utzinger, J., N'Goran, E. K., Caffrey, C. R. and Keiser, J. (2011). From innovation to application: social-ecological context, diagnostics, drugs and integrated control of schistosomiasis. Acta Tropica 120, S121S137.Google Scholar
Verweij, J. J. (2014). Application of PCR-based methods for diagnosis of intestinal parasitic infections in the clinical laboratory. Parasitology 141, 18631872.Google Scholar
Vos, T., Flaxman, A. D., Naghavi, M., Lozano, R., Michaud, C., Ezzati, M., Shibuya, K., Salomon, J. A., Abdalla, S., Aboyans, V., Abraham, J., Ackerman, I., Aggarwal, R., Ahn, S. Y., Ali, M. K., Alvarado, M., Anderson, H. R., Anderson, L. M., Andrews, K. G., Atkinson, C., Baddour, L. M., Bahalim, A. N., Barker-Collo, S., Barrero, L. H., Bartels, D. H., Basanez, M. G., Baxter, A., Bell, M. L., Benjamin, E. J., Bennett, D., et al. (2012). Years lived with disability (YLDs) for 1160 sequelae of 289 diseases and injuries 1990–2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet 380, 21632196.Google Scholar
Wami, W. M., Nausch, N., Bauer, K., Midizi, N., Gwisai, R., Simmonds, P., Mduluza, T., Woolhouse, M. and Mutapi, F. (2014). Comparing parasitological versus serological determination of Schistosoma haematobium infection prevalence in preschool and primary school-aged children: implications for control programmes. Parasitology 141, 19621970.Google Scholar