Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-23T15:50:55.192Z Has data issue: false hasContentIssue false

The potential of using recombinant DNA species-specific probes for the identification of tropical Leishmania

Published online by Cambridge University Press:  23 August 2011

D. C. Barker
Affiliation:
MRC Biochemical Parasitology Unit, Molteno Institute, Cambridge CB2 3EE
Lorna J. Gibson
Affiliation:
MRC Biochemical Parasitology Unit, Molteno Institute, Cambridge CB2 3EE
W. P. K. Kennedy
Affiliation:
MRC Biochemical Parasitology Unit, Molteno Institute, Cambridge CB2 3EE
A.A.A.A Nasser
Affiliation:
MRC Biochemical Parasitology Unit, Molteno Institute, Cambridge CB2 3EE
R. H. Williams
Affiliation:
MRC Biochemical Parasitology Unit, Molteno Institute, Cambridge CB2 3EE

Extract

Human leishmaniasis is a world-wide public health problem with more than 400000 new reported cases/year (Anon, 1984) in the tropics and subtropics. Were (1985) has estimated that Leishmaniases affect about 20 million people in the Third World. In hospitals where treatment is available, initially all positive cases are treated equally; it is the prognosis and follow-up that varies according to the causative organism. A wide variety of species or subspecies of Leishmania may be present in a small verrucose lesion developing after an infected sandfly bite or appear in lesions as the disease progresses. Depending on which Leishmania is present a clinial decision must be made whether to treat with drugs of varying toxicity or not.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1986

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Anon, . (1984). The Leishmaniases: Report of a WHO Expert Committee. WHO Technical Report Series 701, 1140.Google Scholar
Anderson, S., Bankier, A. T., Barrell, B. G., De Bruijin, M. H. L., Coulson, A. R., Drouin, J., Eperon, I. C., Nierlich, D. P., Roe, B. A., Sanger, F., Shcreier, P. H., Smith, A. J. H., Staden, R. & Young, I. G. (1981). Sequence and organisation of the human mitochondrial genome. Nature, London 290, 457–64.CrossRefGoogle ScholarPubMed
Arnot, D. E. (1980). Sequence homologies in kinetoplast DNA. Ph.D. thesis, University of Cambridge.Google Scholar
Arnot, D. E. & Barker, D. C. (1981). Biochemical identification of cutaneous leishmania by analysis of kinetoplast DNA. IT. Sequence homologies in leishmania kDNA. Molecular and Biochemical Parasitology 3, 4756.CrossRefGoogle ScholarPubMed
Balmain, A. & Birnie, G. D. (1979). Nick translation of mammalian DNA. Biochimica et Biophysica Ada 561, 155–66.CrossRefGoogle ScholarPubMed
Barbosa, W., De Sousa, M. C. M., De Soitsa, J. M., Rassi, D. M., Gerais, B. B. & Oliveira, R. L. (1976). Note on classification of the Leishmania spp. responsible for cutaneous leishmaniasis in the east central region of Brazil. Annals of Tropical Medicine and Parasitology 70, 389–99.CrossRefGoogle Scholar
Barker, D. C. (1980). The ultrastructure of kinetoplast DNA with particular reference to the interpretation of darkfield electron microscopy images of isolated purified networks. Micron 11, 2162.Google Scholar
Barker, D. C. (1985). Progress towards making non-radioactive species-specific DNA probes for the identification of tropical leishmania. In Proceedings, VIIth International Congress of Protozoology, Nairobi, Kenya 149, abstract 396.Google Scholar
Barker, D. C. & Arnot, D. E. (1980). Analysis of sequence homologies and ultrastructure in kinetoplast DNA from pathogenic Leishmanias and Trypanosomes using cloned DNA. In ‘Proceedings, Second International Congress of Cell Biology’. European Journal of Cell Biology 22, 124.Google Scholar
Barker, D. C. & Arnot, D. E. (1981). Biochemical identification of cutaneous leishmania by analysis of kinetoplast DNA. I. Ultrastructure and buoyant density analysis. Molecular and Biochemical Parasitology 3, 3346.CrossRefGoogle ScholarPubMed
Barker, D. C., Arnot, D. E. & Butcher, J. (1982). DNA characterization as a taxonomic tool for identification of kinetoplastic flagellate protozoans. In Proceedings of the Workshop of the Pan American Health Organisation. Biochemical Characterization of Leishmania, Washington D.C. 1980 (ed Chance, M. L. and Walton, B. C.), pp. 139180. Geneva: UNDP/World Bank/WHO.Google Scholar
Barker, D. C., Arnot, D. E., Cordingley, J. S., Butcher, J., Perry, H. & Miles, M. A. (1980). Sequences homology in kinetoplast DNA from Trypanosoma cruzi. In Proceedings, Third European Multicolloquium of Parasitology, p. 25.Google Scholar
Barker, D. C. & Butcher, J. (1983). The use of DNA probes in the identification of leishmaniasis: discrimination between isolates of the Leishmania mexicana and L. braziliensis complexes. Trans-actions of the Royal Society of Tropical Medicine and Hygiene 77, 285–97.CrossRefGoogle Scholar
Barker, D. C., Butcher, J., Gibson, L. J., Kennedy, W. P. K., Williams, R. H., Cuba Cuba, C. A., Marsden, P. D., Lainson, R. & Shaw, J. J. (1985). Sequence homology of kinetoplast DNA in Leishmania studied by filter hybridization of endonuclease-digested fragments and in situ hybridization of individual organisms. Annales de Parasitologie (Paris) (in the Press).Google Scholar
Barker, D. C., Gibson, L. J., Williams, R. H., Lainson, R., Shaw, J.J., Ryan, L., Braga, R. R., Vexenat, A. & Cuba, C. A. (1985). ‘In situ’, microscopic, non-radioactive detection DNA homology in single LeAshmania parasites. Nature, London (in preparation).Google Scholar
Barrios, M., Riou, G. & Galibert, F. (1981). Complete sequence of minicircle kinetoplast DNA from Trypanosoma equiperdum. Proceedings of the National Academy of Sciences. USA 78, 3323–7.CrossRefGoogle Scholar
Battaglia, P. A., Ponzi, M. & Birago, C. (1985). kDNA of trypanosomes: a puzzling genome. In Proceedings, VIIth International Congress of Protozoology, Nairobi, Kenya, 124, Abstract 282.Google Scholar
Bolivar, F., Rodriguez, R. L., Greene, P. J., Betlach, M. C., Heynek, H. L. & Boykr, H. W. (1977). Construction and characterization of new cloning vehicles. II. A multi-purpose cloning system. Gene 2, 95113.CrossRefGoogle Scholar
Borst, P., Fase-Fowler, F. & Gibson, W. C. (1981 a). Quantitation of genetic differences beween Trypansoma brucei gambiense, rhodesiense and brucei by restriction enzyme analysis of kinetoplast DNA. Molecular and Biochemical Parasitology 3, 117–31.CrossRefGoogle Scholar
Borst, P. & Hoeijmakers, J. H. J. (1979 a). Structure and function of kinetoplast DNA of the African Trypanosomes. In Extrachromasomal DNA. ICN–UCLA Symposia on Molecular and Cellular Biology (ed. Cummings, D.Borst, P.David, I.Weissmanand, S.Fox, C. F.) 15, 515–32. New York: Academic Press.Google Scholar
Borst, P. & Hoeijmakers, J. H. J. (1979 b). Kinetoplast DNA. Plasmid 2, 2040.CrossRefGoogle ScholarPubMed
Brack, C. H., Bickle, T. A., Yuan, R., Barker, D. C., Foulkes, M., Newton, B. A. &, Jenni, L. (1976). The use of restriction enzymes for the investigation of kinetoplast DNA. In Biochemistry of Parasites and Host–Parasite Relationships (ed. Bossche, H. Van Den), pp. 211–18. Amsterdam: North-Holland.Google Scholar
Brigati, D. J., Myerson, D., Leary, J. J., Spalholz, B., Travis, S. Z., Fong, C. K. Y., Hsiung, G. D. & Ward, D. C. (1983). Detection of viral genomes in cultured cells and paraffin-embedded tissue selections using Biotin-labelled hybridization probes. Virology 126, 3250.CrossRefGoogle Scholar
Chance, M. L. (1976). DNA relationships in the genus leishmania. In Biochemistry of Host-Parasite Relationships (ed. Bossche, H. Van Den), pp. 229235. Amsterdam: Elsevier/North-Holland Biomedical Press.Google Scholar
Chance, M. L. (1979). The identification of leishmania. In Problems in the Identification of Parasites and their Vectors (ed. Taylor, A. E. R. and Muller, R.), pp. 5574. Oxford: Blackwell Scientific Publications.Google Scholar
Chen, K. K. & Donelson, J. E. (1980). The sequence of two kinetoplast DNA minicircles of Trypanosoma brucei. Proceedings of the National Academy of Sciences, USA 77, 2445–9.CrossRefGoogle Scholar
De Ibarra, A. A. L., Howard, J. G. & Snary, D. (1982). Monoclonal antibodies to Leishmania tropica major specificities and antigen location. Parasitology 85, 523–32.CrossRefGoogle ScholarPubMed
Englund, P. T. (1979). Kinetoplast DNA. Journal of Biological Chemistry 254, 4895–900.CrossRefGoogle ScholarPubMed
Englund, P. T., Hajduk, S. L. & Marini, J. C. (1982). The molecular biology of trypanosomes. Annual Reviews of Biochemistry 51, 695726.CrossRefGoogle ScholarPubMed
Evans, D. A., Lanham, S. M., Baldwin, C. I. & Peters, W. (1984). The isolation and isoenzyme characterization of Leishmania braziliensis subspecies from patients with cutaneous leishmaniasis acquired in Belize. Transactions of the Royal Society of Tropical Medicine and Hygiene 78, 3542.CrossRefGoogle Scholar
Gall, J. G. & Pardue, M. L. (1971). Nucleic acid, vol. 21 hybridization in cytological preparations. In Methods of Enzymology (ed. Grossman, L. and Moldave, K.), pp. 470–80. New York and London: Academic Press.Google Scholar
Grunstein, M. & Hogness, D. (1975). Colony hybridization: a method for the isolation of cloned DNA's that contain a specific gene. Proceedings of the National Academy of Sciences, USA 72, 3961–5.CrossRefGoogle Scholar
Hanahan, D. & Meselson, M. (1980). A protocol for high density screening of plasmids in x1776. Gene 10, 63–7.CrossRefGoogle Scholar
Kennedy, W. P. K. (1983). Identification of ‘Old World’ leishmaniasis by kinetoplast DNA. Ph.D. thesis, University of Cambridge.Google Scholar
Kennedy, W. P. K. (1984). Novel identification of differences in the kinetoplast DNA of Leishmania isolates by recombinant DNA techniques and ‘in situ’ hybridization. Molecular and Biochemical Parasitology 12, 313–25.Google Scholar
Kidane, G. Z., Hughes, D. & Simpson, L. (1984). Sequence heterogeneity and anomalous electrophoretic mobility of kinetoplast minicircle DNA from Leishmania tarentolae. Gene 27, 265–77.CrossRefGoogle ScholarPubMed
Kitchen, P. A., Klein, V. A., Fein, B. I. & Englund, P. T. (1984). Gapped minicircles: a novel replication intermediate of kinetoplast DNA. Journal of Biological Chemistry 259, 15532–9.CrossRefGoogle Scholar
Lainson, R. (1982 a). Leishmaniasis. In Parasitic Zoonoses. CRC Handbook Series in Zoonoses: Section C, vol. 1 (ed. Jacobs, L. and Arambulo, P.), pp. 41103. Boca Raton: CRC Press.Google Scholar
Lainson, R. (1982 a). Leishmaniasis parasites of mammals in relation to human diseases. In Animal Disease in Relation to Animal Conservation. Symposium of the Zoological Society of London 50, 137–79.Google Scholar
Lainson, R., Shaw, J. J. & Povoa, M. A. (1981). The importance of endentates (sloths and anteaters) as primary reservoirs of Leishmania braziliensis guyanensis, causative agent in ‘ pian-bois’ in north Brazil. Transactions of the Royal Society of Tropical Medicine and Hygiene 75, 611–12.CrossRefGoogle Scholar
Lainson, R., Shaw, J. J., Ready, P. D., Miles, M. A. & Povoa, M. A. (1981). Leishmaniasis in Brazil. XVI. Isolation and identification of Leishmania species from sandflies, wild animals and man in north Para State, with particular reference to L. braziliensis guyanensis, causative agent of ‘pian-bois’. Transactions of the Royal Society of Tropical Medicine and Hygiene 75, 530–6.CrossRefGoogle Scholar
Langee-Safer, P. R., Levine, M. & Ward, D. C. (1982). Immunological method for mapping genes on Drosophila polytene chromosomes. Proceedings of the National Academy of Sciences, USA 79, 4381–5.CrossRefGoogle Scholar
Langer, P. R., Waldrop, A. A. & Ward, D. C. (1981). Enzymatic synthesis of biotin-labelled polynucleotides: novel nucleic acid affinity probes. Proceedings of the National Academy of Sciences, USA 78, 6633–7.CrossRefGoogle Scholar
Leary, J. J., Brigati, D. J. & Ward, D. C. (1983). Rapid and sensitive colorimetric method for visualizing biotin-labelled DNA probes hybridized to DNA or RNA immobilized on nitrocellulose: bio-blots. Proceedings of the National Academy of Sciences, USA 40, 4045–9.CrossRefGoogle Scholar
Manuelidis, L. (1982). Repeated DNA sequences and nuclear structure. In Oenome Evolution (ed. Dover, G. A. and Flavell, R. B.), pp. 263–85. New York: Academic Press.Google Scholar
Marini, J. C., Levene, S. D., Crothers, D. M. & Englund, P. T. (1982). Bent helical structure in kinetoplast DNA. Proceedings of the National Academy Sciences, USA 79, 7664–8.CrossRefGoogle ScholarPubMed
Martens, P. A. & Clayton, D. A., (1979). Mechanism of mitochondrial DNA replication in mouse L-cells: location and sequence of the light-strand origin of replication. Journal of Molecular Biology 135, 327–51.CrossRefGoogle Scholar
McMahon-Pratt, D. M. & David, J. R. (1981). Monoclonal antibodies that distinguish between'New World’ species of leishmania. Nature, London 291, 581–3.CrossRefGoogle Scholar
Messing, J. & Vieira, J. (1982). A new pair of M13 vectors for selecting either strand of double-digested restriction fragments. Gene 19, 269–76.CrossRefGoogle Scholar
Molyneux, D. H. & Ashford, R. W. (1983). The Biology of Trypanosoma and Leishmania, Parasites of Man and Domestic Animals. London: Taylor & Francis.Google Scholar
Morel, C. & Simpson, L. (1980). Characterization of pathogenic Trypanosomaditae by restriction endonuclease finger-printing of kinetoplast DNA minicircles. American Journal of Tropical Medicine and Hygiene 29, Suppl. 1070–4.CrossRefGoogle Scholar
Ntambi, J. M., & Englund, P. T. (1985). A gap at a unique location in newly replicated kinetoplast DNA minicircles from Trypanosoma equiperdum. Proceedings, VHth International Congress of Protozoology, Nairobi, Kenya 128, Abstract 299.Google Scholar
Ready, P. D., Lainson, R. & Shaw, J. J. (1983). Leishmaniansis in Brazil. XX. Prevalence of ‘enzootic rodent leishmaniasis’ (Leishmania mexicana amazonensis), and apparent absence of ‘pian bois’ (Le. braziliensis guyanensis), in plantations of introduced tree species and in other non-climax forests in eastern Amazonia. Transactions of the Royal Society of Tropical Medicine and Hygiene 77, 775–85.CrossRefGoogle ScholarPubMed
Rigby, P. W. J., Diekman, R. C. & Berg, P. (1977). Labelling deoxyribonucleic acid to high specific activity in vitro by nick translation with DNA polymerase. International Journal of Molecular Biology 113, 237–51.CrossRefGoogle ScholarPubMed
Sanger, F., Nickler, S. & Coulson, A. R. (1977). DNA sequencing with chain termination inhibitors. Proceedings of the National Academy of Sciences, USA 74, 5463–7.CrossRefGoogle ScholarPubMed
Selsing, E., Wells, R. D., Alden, C. J. & Arnot, S. (1979). Bent DNA: visualisation of a base-paired and stacked A-B conformational junction. Journal of Biological Chemistry 254, 5417–22.CrossRefGoogle ScholarPubMed
Simpson, L. (1972). The kinetoplast of the haemoflagellates. International Reviews of Cytology 32, 139207.CrossRefGoogle Scholar
Simpson, A. M. & Simpson, L. (1980). Kinetoplast DNA and RNA of Trypanosoma brucei. Molecular and Biochemical Parasitology 2, 93108.CrossRefGoogle ScholarPubMed
Steinert, M., Van Assel, S., Bobst, P., Mol, J. N. M., Kleisen, C. M. & Newton, B. A. (1973). Specific detection of kinetoplast DNA in cytological preparations of trypanosomes by hybridization with complementary RNA. Experimental Cell Research 76, 175–85.CrossRefGoogle ScholarPubMed
Steinert, M., Van Assel, S., Borst, P. & Newton, B. A. (1976). Evolution of kinetoplast DNA. In The Genetic Function of Mitochrondrial DNA (ed. Saccone, C. and Kroon, A. M.), pp. 7181. Amsterdam: North-Holland.Google Scholar
Steinert, M. & Van Assel, S. (1980). Sequence heterogeneity in kinetoplast DNA: reassociation kinetics. Plasmid 3, 717.CrossRefGoogle ScholarPubMed
Southern, E. (1975). Detection of specific sequences among DNA fragments separated by gel electrophoresis. Journal of Molecular Biology 98, 503.CrossRefGoogle ScholarPubMed
Subramanian, K. N., Dhar, R. & Weissman, S. M. (1977). Nucleotide sequence of a fragment of SV40 DNA that contains the origin of DNA replication and specifies the 5’ ends of ‘ early’ and ‘ late’ viral RNA. III. Construction of the total sequence of Eco Rllg fragment of SV40 DNA. Journal of Biological Chemistry 252, 355–67.CrossRefGoogle Scholar
Twigg, A. J. & Sherratt, D. (1980). Trans-complementable copy-number mutants of plasmid Col El. Nature, London 283, 216–18.CrossRefGoogle Scholar
Wahl, G. M., Stern, M. & Stark, G. R. (1979). Efficient transfer of large fragments from agarose gels to diazobenzylmethyl paper and rapid hybridization by using dextran sulphate. Proceedings of the National Academy of Sciences, USA 76, 3683–7.CrossRefGoogle Scholar
Wirth, D. F. & McMahon-Pratt, D. (1982). Rapid identification of Leishmania species by specific hybridization of kinetoplast DNA in cutaneous lesions. Proceedings of the National Academy of Sciences, USA 79, 69997003.CrossRefGoogle ScholarPubMed
Ward, R. D., Lainson, R. & Shaw, J. J. (1978). Some methods for membrane feeding of laboratory reared neotropical sandflies (Diptera: Psychodidae). Annals of Tropical Medicine and Parasitology 72, 269–76.CrossRefGoogle ScholarPubMed
Were, J. B. O. (1985). Chemotherapy of Leishmaniases. Proceedings, VIIth International Congress of Protozoology, Nairobi, Kenya 145, Abstract 367.Google Scholar