Hostname: page-component-78c5997874-8bhkd Total loading time: 0 Render date: 2024-11-04T19:41:35.532Z Has data issue: false hasContentIssue false

Physiological, morphological, and immunochemical parameters used for the characterization of clinical and environmental isolates of Acanthamoeba

Published online by Cambridge University Press:  09 November 2012

A. BECKER-FINCO
Affiliation:
Departamento de Patologia Básica, UFPR, Curitiba, Paraná, Brazil
A. O. COSTA
Affiliation:
Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, UFMG, Belo Horizonte, Minas Gerais, Brazil
S. K. SILVA
Affiliation:
Departamento de Patologia Básica, UFPR, Curitiba, Paraná, Brazil
J. S. RAMADA
Affiliation:
Departamento de Patologia Básica, UFPR, Curitiba, Paraná, Brazil
C. FURST
Affiliation:
Departamento de Patologia, Centro de Ciências da Saúde, UFES, Vitória, Espírito Santo, Brazil
A. E. STINGHEN
Affiliation:
Departamento de Patologia Básica, UFPR, Curitiba, Paraná, Brazil
B. C. DE FIGUEIREDO
Affiliation:
Instituto Pelé Pequeno Príncipe, Faculdades Pequeno Príncipe, Curitiba, Paraná, Brazil
J. DE MOURA
Affiliation:
Departamento de Patologia Básica, UFPR, Curitiba, Paraná, Brazil
L. M. ALVARENGA*
Affiliation:
Departamento de Patologia Básica, UFPR, Curitiba, Paraná, Brazil
*
*Corresponding author: Departamento de Patologia Básica, UFPR, Curitiba, Paraná, Brazil. Tel: +55 41 3361 1692. Fax: +55 41 3266 2042. E-mail: [email protected]

Summary

The factors that characterize Acanthamoeba strains as harmless or potentially pathogenic have not been elucidated. Analysing the in vitro and in vivo parameters of Acanthamoeba samples, including heat tolerance at temperatures close to that of the human body, cytopathic effects, and their ability to cause infections in animals, has been proposed to identify their pathogenic potential. Another promising criterion for differentiating strains is the analysis of their biochemical and immunochemical properties. In this study, a comparative evaluation between clinical and environmental Acanthamoeba isolates was performed on the basis of physiological, morphological, and immunochemical criteria. Crude antigens were used to characterize the protein profiles by electrophoresis and immunize mice to produce polyclonal and monoclonal antibodies. The antibodies were characterized using ELISA, Western blotting, and immunofluorescence techniques. The results obtained with polyclonal antibodies suggest the presence of specific proteins for each studied isolate and co-reactive immunochemical profiles among conserved components. Ten monoclonal antibody clones were obtained; mAb3 recognized 3 out of 4 samples studied. The results of this study may help standardize criteria for identifying and characterizing Acanthamoeba strains. Taken together, our results support the view that a set of features may help differentiate Acanthamoeba species and isolates.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Alvarenga, L. M., Martins, M. S., Moura, J. F., Kalopothakis, E., Oliveira, J. C., Mangili, O. C., Granier, C. and Chávez-Olortégui, C. (2003). Production of monoclonal antibodies capable of neutralizing dermonecrotic activity of Loxosceles intermedia spider venom and their use in a specific immunometric assay. Toxicon 42, 725731. doi:10.1016/j.toxicon.2003.09.006CrossRefGoogle Scholar
Booton, G. C., Visvesvara, G. S., Byers, T. J., Kelly, D. J. and Fuerst, P. A. (2005). Identification and distribution of Acanthamoeba species genotypes associated with nonkeratitis infections. Journal of Clinical Microbiology 43, 16891693. doi:10.1128/JCM.43.4.1689-1693.2005CrossRefGoogle ScholarPubMed
Chávez-Olórtegui, C., Ait Amara, D., Rochat, H., Diniz, C. and Granier, C. (1991). In vivo protection against scorpion toxins by liposomal immunization. Vaccine 9, 907910. doi:10.1016/0264-410X(91)90012-UCrossRefGoogle ScholarPubMed
Da Rocha-Azevedo, B. and Costa e Silva-Filho, F. (2007). Biological characterization of a clinical and an environmental isolate of Acanthamoeba polyphaga: analysis of relevant parameters to decode pathogenicity. Archives of Microbiology 188, 441449. doi:10.1007/s00203-007-0264-3CrossRefGoogle Scholar
Dart, J. K. G., Saw, V. P. J. and Kilvington, S. (2009). Acanthamoeba keratitis: diagnosis and treatment update 2009. American Journal of Ophthalmology 148, 487499. doi:10.1016/j.ajo.2009.06.009CrossRefGoogle ScholarPubMed
De Jonckheere, J. F. (1980). Growth characteristics, cytopathic effect in cell culture, and virulence in mice of 36 type strains belonging to 19 different Acanthamoeba spp. Applied and Environmental Microbiology 39, 681685.CrossRefGoogle Scholar
Garate, M., Marchant, J., Cubillos, I., Cao, Z., Khan, N. A. and Panjwani, N. (2005). In vitro pathogenicity of Acanthamoeba is associated with the expression of the mannose-binding protein. Investigative Ophthalmology and Visual Science 47, 10561062. doi:10.1167/iovs.05-0477CrossRefGoogle Scholar
Hewett, M. K., Robinson, B. S., Monis, P. T. and Saint, C. P. (2003). Identification of a new Acanthamoeba 18SrRNA gene sequence type, corresponding to the species Acanthamoeba jacobsi Sawyer, Nerad and Visvesvara, 1992 (Lobosea: Acanthamoebidae). Acta Protozoologica 42, 325–219.Google Scholar
Horn, M., Fritsche, T. R., Gautom, R. K., Schleifer, K. H. and Wagner, M. (1999). Novel bacterial endosymbionts of Acanthamoeba spp. Related to the Paramecium caudatum symbiont Caedibacter caryophilus. Environmental Microbiology 1, 357367. doi:10.1046/j.1462-2920.1999.00045.xCrossRefGoogle Scholar
Imbert-Bouyer, S., Merlaud, A., Imbert, C., Daniault, G. and Rodier, M. (2004). A mannose binding protein is involved in the adherence of Acanthamoeba species to inert surfaces. FEMS Microbiology Letters 238, 207211. doi:10.1111/j.1574-6968.2004.tb09757.xCrossRefGoogle ScholarPubMed
Khan, N. A. (2001). Pathogenicity, morfology and differentiation of Acanthamoeba. Current Microbiology 43, 391395. doi:10.1007/s002840010325CrossRefGoogle Scholar
Khan, N. A., Jarrol, E. L., Panjwani, N., Cao, Z. and Paget, T. A. (2000). Proteases as markers for differentiation of pathogenic and nonpathogenic species of Acanthamoeba. Journal of Clinical Microbiology 38, 28582861.CrossRefGoogle ScholarPubMed
Khan, N. A. and Tareen, N. K. (2003). Genotypic, phenotypic, biochemical, physiological and pathogen city-based categorisation of Acanthamoeba strains. Folia Parasitologica 50, 97104.CrossRefGoogle Scholar
Marciano-Cabral, F. and Cabral, G. (2003). Acanthamoeba spp. as agents of disease in humans. Clinical Microbiology Reviews 16, 273307. doi:10.1128/CMR.16.2.273-307.2003CrossRefGoogle ScholarPubMed
Madigan, M. T. and Martinko, J. M. (2006). Brock Biology of Microorganisms, 11th Edn. Pearson-Prentice Hall, Upper Saddle River, NJ, USA.Google Scholar
Martinez, A. J. and VIisvesvara, G. S. (1997). Free-living amphizoic and opportunistic amebas. Brain Pathology 7, 583598. doi:10.1111/j.1750-3639.1997.tb01076.xCrossRefGoogle ScholarPubMed
Neff, R. J. and Neff, R. H. (1969). The biochemistry of amoebic encystment. Symposia of the Society for Experimental Biology 23, 5181.Google ScholarPubMed
Niederkorn, J. Y., Alizadeh, H., Leher, H. and McCulley, J. P. (1999). The immunobiology of Acanthamoeba keratitis. Spinger Seminars in Immunopathology 21, 147160. doi:10.1007/BF00810247Google ScholarPubMed
Page, F. C. (1988). A New Key to Freshwater and Soil Gymnamoebae. Freshwater Biological Association, Ambleside, Cumbria, UK.Google Scholar
Panjwani, N. (2010). Pathogenesis of Acanthamoeba keratitis. The Ocular Surface 8, 7079.CrossRefGoogle ScholarPubMed
Pussard, M. and Pons, R. (1977). Morphologies de la paroi kystique et taxonomie du genre Acanthamoeba (Protozoa, Amoebida). Protistologica 13, 557610.Google Scholar
Radford, C. F., Lehmann, O. J. and Dark, J. K. (1998). Acanthamoeba keratitis: multicentre survey in England. National Acanthamoeba keratitis study group. British Journal of Ophthalmology 82, 13871392.CrossRefGoogle ScholarPubMed
Rowbotham, T. J. (1980). Preliminary report on the pathogenicity of Legionella pneumophila for freshwater and soil amoebae. Journal of Clinical Pathology 33, 11791183.CrossRefGoogle ScholarPubMed
Schuster, F. L. and Visvesvara, G. S. (2004 a). Free-living amoebae as opportunistic and non-opportunistic pathogens of humans and animals. International Journal for Parasitology 34, 10011027. doi:10.1016/j.ijpara.2004.06.004CrossRefGoogle ScholarPubMed
Schuster, F. L. and Visvesvara, G. S. (2004 b) Amebae and ciliated protozoa as causal agents of waterborne zoonotic disease. Veterinary Parasitology 126, 91120. doi:10.1016/j.vetpar.2004.09.019CrossRefGoogle ScholarPubMed
Siddiqui, R. and Khan, N. A. (2012). Biology and pathogeneses of Acanthamoeba. Parasites and Vectors 5, 6. doi:10.1186/1756-3305-5-6CrossRefGoogle Scholar
Stothard, D. R., Schroeder-Diedrich, J. M., Awwad, M. H., Gast, R. J., Ledee, D. R., Rodriguez-Zaragoza, S., Dean, C. L., Fuerst, P. A. and Byers, T. J. (1998). The evolutionary history of the genus Acanthamoeba and the identification of eight new 18S rRNA gene sequence types. Journal of Eukaryotic Microbiology 45, 4554. doi: 10.1111/j.1550-7408.1998.tb05068.xCrossRefGoogle ScholarPubMed
Turner, M. L., Cockerell, E. J., Brereton, H. M., Badenoch, P. R., Tea, M., Coster, D. J. and Williams, K. A. (2005). Antigens of selected Acanthamoeba species detected with monoclonal antibodies. International Journal for Parasitology 35, 981990. doi:10.1016/j.ijpara.2005.03.015CrossRefGoogle ScholarPubMed
Walochnik, J., Obwaller, A. and Aspöck, H. (2000). Correlations between morphological, molecular biological, and physiological characteristics in clinical and nonclinical isolates of Acanthamoeba spp. Applied and Environmental Microbiology 66, 44084413. doi:10.1128/AEM.66.10.4408-4413.2000CrossRefGoogle ScholarPubMed
Walochnik, J., Obwaller, A. and Aspöck, H. (2001). Immunological interstrain crossreactivity correlated to 18S rDNA sequence types in Acanthamoeba spp. International Journal for Parasitology 31, 163167. doi:10.1016/S0020-7519(00)00166-1CrossRefGoogle ScholarPubMed
Walochnik, J., Sommer, K., Obwaller, A. E., Schober, M. H. and Aspöck, H. (2004). Characterisation and differentiation of pathogenic and non pathogenic Acanthamoeba strains by their protein and antigen profiles. Parasitology Research 92, 289298. doi:10.1007/s00436-003-1041-0CrossRefGoogle ScholarPubMed