Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2024-12-23T08:47:38.589Z Has data issue: false hasContentIssue false

Phylogeny of snake trypanosomes inferred by SSU rDNA sequences, their possible transmission by phlebotomines, and taxonomic appraisal by molecular, cross-infection and morphological analysis

Published online by Cambridge University Press:  27 March 2008

L. B. VIOLA
Affiliation:
Departamento de Parasitologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, SP, Brasil
M. CAMPANER
Affiliation:
Departamento de Parasitologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, SP, Brasil
C. S. A. TAKATA
Affiliation:
Departamento de Parasitologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, SP, Brasil
R. C. FERREIRA
Affiliation:
Departamento de Parasitologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, SP, Brasil
A. C. RODRIGUES
Affiliation:
Departamento de Parasitologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, SP, Brasil
R. A. FREITAS
Affiliation:
Grupo de Biologia Vetorial e Eco-epidemiologia de Trypanosomatidae na Amazônia, Instituto Nacional de Pesquisas da Amazônia, Manaus, AM, Brasil
M. R. DUARTE
Affiliation:
Laboratório de Herpetologia, Instituto Butantan, São Paulo, SP, Brasil
K. F. GREGO
Affiliation:
Laboratório de Herpetologia, Instituto Butantan, São Paulo, SP, Brasil
T. V. BARRETT
Affiliation:
Grupo de Biologia Vetorial e Eco-epidemiologia de Trypanosomatidae na Amazônia, Instituto Nacional de Pesquisas da Amazônia, Manaus, AM, Brasil
E. P. CAMARGO
Affiliation:
Departamento de Parasitologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, SP, Brasil
M. M. G. TEIXEIRA*
Affiliation:
Departamento de Parasitologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, SP, Brasil
*
*Corresponding author: Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, 05508-900, Brazil. Tel: +55 11 3091 7268. Fax: +55 11 3091 7417. E-mail: [email protected]

Summary

Blood examination by microhaematocrit and haemoculture of 459 snakes belonging to 37 species revealed 2·4% trypanosome prevalence in species of Viperidae (Crotalus durissus and Bothrops jararaca) and Colubridae (Pseudoboa nigra). Trypanosome cultures from C. durissus and P. nigra were behaviourally and morphologically indistinguishable. In addition, the growth and morphological features of a trypanosome from the sand fly Viannamyia tuberculata were similar to those of snake isolates. Cross-infection experiments revealed a lack of host restriction, as snakes of 3 species were infected with the trypanosome from C. durissus. Phylogeny based on ribosomal sequences revealed that snake trypanosomes clustered together with the sand fly trypanosome, forming a new phylogenetic lineage within Trypanosoma closest to a clade of lizard trypanosomes transmitted by sand flies. The clade of trypanosomes from snakes and lizards suggests an association between the evolutionary histories of these trypanosomes and their squamate hosts. Moreover, data strongly indicated that these trypanosomes are transmitted by sand flies. The flaws of the current taxonomy of snake trypanosomes are discussed, and the need for molecular parameters to be adopted is emphasized. To our knowledge, this is the first molecular phylogenetic study of snake trypanosomes.

Type
Original Articles
Copyright
Copyright © Cambridge University Press 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Anderson, R. J. and Ayala, C. S. (1968). Trypanosome transmitted by Phlebotomus: first report from the Americas. Science 161, 10231025.CrossRefGoogle ScholarPubMed
Arantes, J. B. and Fonseca, F. (1931 a). Pesquisas sobre Trypanosomas. I. Trypanosoma butantanense, sp. n., parasita da serpente Ophis merremii Wagler, 1824. Memorias do Instituto Butantan 6, 215222.Google Scholar
Arantes, J. B. and Fonseca, F. (1931 b). Pesquisas sobre Trypanosomas. III. Trypanosoma merremii, sp. n., parasita da serpente Ophis merremii Wagler, 1824. Memorias do Instituto Butantan 6, 227229.Google Scholar
Ayala, S. C. (1970). Two new trypanosomes from California toads and lizards. Journal of Protozoology 17, 370373.CrossRefGoogle Scholar
Ayala, S. C. (1971). Trypanosomes in wild California sandflies, and extrinsic stages of Trypanosoma bufophlebotomi. Journal of Protozoology 18, 433436.CrossRefGoogle ScholarPubMed
Ayala, S. C., Atkinson, C. and Vakalis, N. (1983). Two new trypanosomes from North American snakes. Journal of Parasitology 69, 391396.CrossRefGoogle Scholar
Ayala, S. C. and McKay, J. G. (1971). Trypanosoma gerrhonoti n. sp., and extrinsic development of lizard trypanosomes in California sandflies. Journal of Protozoology 18, 430433.CrossRefGoogle Scholar
Brumpt, E. (1914). Le xenodiagnostic. Application au diagnostic de quelques infections parasitaires et en particulier à la Trypanosomiase de Chagas. Bulletin de la Societe de Pathologie Exotique 7, 706710.Google Scholar
Brygoo, E. R. (1965 a). Description de Trypanosoma brazili E. Brumpt 1914. Archives de le Institut Pasteur de Madagascar 34, 4754.Google Scholar
Brygoo, E. R. (1965 b). Hematozoaires de reptiles Malgaches. III. Deux Trypanosomes nouveaux: Trypanosoma haranti n. sp. d'Ophidien et Trypanosome domerguei n. sp. parasite d'Iguane. Archives de le Institut Pasteur de Madagascar 34, 4754.Google Scholar
Chia, N. M. and Miller, J. H. (1984). Morphological and developmental studies of the snake trypanosome Trypanosoma hydrae Ayala, Atkinson, Vakalis, 1983 in experimentally infected hosts and in culture. Journal of Protozoology 31, 352356.CrossRefGoogle ScholarPubMed
Christensen, H. A. and Telford, R. S. J. (1972). Trypanosoma thecadactyli sp. n. from forest geckoes in Panama, and its development in the sandyfly Lutzomyia trinidadensis (Newstead) (Diptera, Psychodidae). Journal of Protozoology 19, 403406.CrossRefGoogle Scholar
Dantas-Torres, F., Oliveira-Filho, E. F., Souza, B. O. F. and , F. B. (2005). First record of Amblyomma rotundatum Koch, 1844 (Acari: Ixodidae) parasitizing Crotalus durissus cascavella (Wagler, 1824) (Squamata: Viperidae) in the state of Pernambuco, Brazil. Arquivos do Instituto Biológico, São Paulo 72, 389390.CrossRefGoogle Scholar
De Biasi, P., Pessôa, S. B., Puorto, G. and Fernandes, W. (1975). Nota sobre formas evolutivas de Trypanosoma de serpente em meio de cultura. Memorias do Instituto Butantan 39, 85101.Google Scholar
Douglas, D. A., Janke, A. and Arnason, U. (2006). A mitogenomic study on the phylogenetic position of snakes. Zoologica Scripta 35, 545558. doi: 10.1111/j.1463-6409.2006.00257CrossRefGoogle Scholar
Fantham, H. B. and Porter, A. (1950). The endoparasites of certain South African snakes, together with some remarks on their structure and effects on their hosts. Proceedings of the Zoological Society of London 120, 599647.CrossRefGoogle Scholar
Fantham, H. B. and Porter, A. (1953). The endoparasites of some North American snakes and their effects on the ophidia. Proceedings of the Zoological Society of London 123, 867898.CrossRefGoogle Scholar
Ferreira, R. C., Campaner, M., Viola, L. B., Takata, C. S., Takeda, G. F. and Teixeira, M. M. (2007). Morphological and molecular diversity and phylogenetic relationships among anuran trypanosomes from the Amazonia, Atlantic Forest and Pantanal biomes in Brazil. Parasitology 134, 16231638. doi: 10.1017/S0031182007003058.CrossRefGoogle ScholarPubMed
Fonseca, F. (1935). Trypanosoma matogrossense, sp. n. Memorias do Instituto Butantan 9, 191193.Google Scholar
Freitas, R. A., Naiff, R. D. and Barrett, T. V. (2002). Species diversity and flagellate infections in the sand fly fauna near Porto Grande, State of Amapa, Brazil (Diptera: Psychodidae. Kinetoplastida: Trypanosomatidae). Memorias do Instituto Oswaldo Cruz 97, 5359.CrossRefGoogle ScholarPubMed
Haag, J., O'h Uigin, C. and Overath, P. (1998). The molecular phylogeny of trypanosomes: evidence for an early divergente of the Salivaria. Molecular and Biochemical Parasitology 91, 3749.CrossRefGoogle Scholar
Hamilton, P. B., Gibson, W. C. and Stevens, J. R. (2007). Patterns of co-evolution between trypanosomes and their hosts deduced from ribosomal RNA and protein-coding gene phylogenies. Molecular Phylogenetics and Evolution 44, 1525. doi: 10.1016/J.YMPEV.2007.03.023.CrossRefGoogle ScholarPubMed
Hamilton, P. B., Stevens, J. R., Gaunt, M. W., Gidley, J. and Gibson, W. C. (2004). Trypanosomes are monophyletic: evidence from genes for glyceraldehyde phosphate dehydrogenase and small subunit ribosomal RNA. International Journal for Parasitology 34, 13931404. doi: 10.1016/J.IJPARA.2004.08.011.CrossRefGoogle ScholarPubMed
Huelsenbeck, J. P., Ronquist, F., Nielsen, R. and Bollback, J. P. (2001). Bayesian inference of phylogeny and its impact on evolutionary biology. Science 294, 23102314. doi: 10.1126/SCIENCE.1065889.CrossRefGoogle ScholarPubMed
Jakes, K. A., O'donoghue, P. J. and Adlard, R. (2001). Phylogenetic relationships of Trypanosoma chelodina and Trypanosoma binneyi from Australian tortoises and platypuses inferred from small subunit rRNA analyses. Parasitology 123, 483487. doi: 10.1017/S0031182001008721.CrossRefGoogle ScholarPubMed
Lainson, R., Ishikawa, E. A. and Silveira, F. T. (2002). American visceral leishmaniasis: wild animal hosts. Transactions of the Royal Society of Tropical Medicine and Hygiene 96, 630631.CrossRefGoogle ScholarPubMed
Lukes, J., Jirku, M., Dolezel, D., Kral'Ova, I., Hollar, L. and Maslov, D. (1997). Analysis of ribosomal RNA genes suggests that trypanosomes are monophyletic. Journal of Molecular Evolution 44, 521527.CrossRefGoogle ScholarPubMed
Maia da Silva, F., Junqueira, A. C. V., Campaner, M., Rodrigues, A. C., Crisante, G., Ramirez, L. E., Caballero, Z. C. E., Monteiro, F. A., Coura, J. R., Ãnez, N. and Teixeira, M. M. G. (2007). Comparative phylogeography of Trypanosoma rangeli and Rhodnius (Hemiptera: Reduviidae) supports a long coexistence of parasite lineages and their sympatric vectors. Molecular Ecology 16, 33613373.CrossRefGoogle ScholarPubMed
Minter-Goedbloed, E., Leak, C. J., Minter, D. M., McNamara, J., Kimber, C., Bastien, P., Evans, D. A. and Le Ray, D. (1993). Trypanosoma varani and T. grayi-like trypanosomes: development in vitro and in insect hosts. Parasitology Research 79, 329333.CrossRefGoogle Scholar
Pessôa, S. B. (1928). Contribuição ao estudo dos hemoparasitos dos Ophideos. I. Nota. Nova espécie de Trypanosoma parasita de Philodryas nattereri. Revista de Biologia e Hygiene, São Paulo 1, 5162.Google Scholar
Pessôa, S. B. (1968). Trypanosoma hogei n. sp. parasita da falsa muçurana (Rachidelus brazili Boul.). O Hospital, Rio de Janeiro 73, 12571260.Google Scholar
Pessôa, S. B. and De Biasi, P. (1972). Trypanosoma cascavelli sp. n. parasita da cascavel: Crotalus durissus terrificus (Laurenti). Atas da Sociedade de Biologia do Rio de Janeiro 15, 6770.Google Scholar
Pessôa, S. B. and Fleury, G. C. (1969). Duas novas espécies de Tripanosomas parasitas de serpentes do Brasil. Revista Brasileira de Biologia 29, 8186.Google Scholar
Rodrigues, A. C., Paiva, F., Campaner, M., Stevens, J. R., Noyes, H. A. and Teixeira, M. M. G. (2006). Phylogeny of Trypanosoma (Megatrypanum) theileri and related trypanosomes reveals lineages of isolates associated with artiodactyl hosts diverging on SSU and ITS ribosomal sequences. Parasitology 132, 215224. doi: 10.1017/S0031182005008929.CrossRefGoogle ScholarPubMed
Siddall, M. E. and Desser, S. S. (1992). Alternative leech vectors for frog and turtle trypanosomes. Journal of Parasitology 78, 562563.CrossRefGoogle ScholarPubMed
Stevens, J. R., Noyes, H. A., Schofield, C. J. and Gibson, W. (2001). The molecular evolution of Trypanosomatidae. Advances in Parasitology 48, 156. doi: 10.1016/S0065-308X(01)48003-1.CrossRefGoogle ScholarPubMed
Telford, R. S. (1995). The kinetoplastid hemoflagellates of reptiles. In Parasitic Protozoa Vol. 10 (ed. Kreier, J. P.), pp. 161223. Academic Press, New York.CrossRefGoogle Scholar
Thompson, J. D., Gibson, T. J., Plewniak, F., Jeanmougin, F. and Higgins, D. G. (1997). The ClustalX windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Research 25, 48764882.CrossRefGoogle Scholar
Vidal, N. and Hedges, S. B. (2005). The phylogeny of squamate reptiles (lizards, snakes, and amphisbaenians) inferred from nine nuclear protein-coding genes. Comptes Rendus Biologies 328, 10001008. doi: 10.1016/J.CRVI.2005.10.001.CrossRefGoogle ScholarPubMed
Wallace, F. G., Camargo, E. P., McGhee, R. B. and Roitman, I. (1983). Guidelines for description of new species of lower trypanosomatids. Journal of Protozoology 30, 308313.CrossRefGoogle Scholar
Wenyon, C. M. (1909). A trypanosome and a haemogregarine of a tropical American snake. Parasitology 1, 314317.CrossRefGoogle Scholar