Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-24T01:34:26.906Z Has data issue: false hasContentIssue false

Phospholipid metabolism in Plasmodium-infected erythrocytes: guidelines for further studies using radioactive precursor incorporation

Published online by Cambridge University Press:  06 April 2009

H. J. Vial
Affiliation:
CNRS UA 530, INSERM U 58, 60 rue de Navacelles, 34090 Montpellier, France
M. L. Ancelin
Affiliation:
CNRS UA 530, INSERM U 58, 60 rue de Navacelles, 34090 Montpellier, France
M. J. Thuet
Affiliation:
Laboratoire de Physique Biologique, Institut de Biologie, Boulevard Henri IV, 34000 Montpellier, France
J. R. Philippot
Affiliation:
CNRS UA 530, INSERM U 58, 60 rue de Navacelles, 34090 Montpellier, France

Summary

The biosynthesis of phospholipids is extensive in Plasmodium knowlesi-infected simian erythrocytes due to the synthesis of membranes by this single-cell eukaryote in a host erythrocyte devoid of any pathway for lipid biosynthesis. In the present paper, we show that the incorporation of [3H]glycerol, which reflects de novo biosynthesis, is better studied at 300 μM−1 mM than at the trace doses, since this non-physiological precursor does not modify the amount of phosphatidylcholine biosynthesis from [3H]choline. Time-course incorporation of radioactive glycerol, oleate, lysophosphatidylcholine, choline, and inositol in RPMI 1640 medium containing nutrients for lipid synthesis showed that the optimum incubation time for phospholipid studies is 60–90 min, after which radioactive incorporation slows considerably. On the other hand, studies with [14C]serine revealed that incubation for 2–3 h is necessary for isotopic labelling of phosphatidylcholine via phosphatidylserine decarboxylation and phosphatidylethanolamine N-methylation. Incorporation of the various fatty acids into individual lipids was related to the molecular species composing each of them. Studies with [14C palmitoyl] lysophosphatidylcholine showed a very fast intracellular release of radioactive fatty acids, which indicates a potent lysophospholipase activity. Taken together, these data define the indispensable conditions for an experimental system suitable for further studies.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Referances

Ancelin, M. L. & Vial, H. J. (1986). Choline kinase activity in Plasmodium-infected erythrocytes: Characterisation and utilization as useful parasite specific marker in malarial fractionation studies. Biochimica et Biophysica Acta 875, 52–8.CrossRefGoogle ScholarPubMed
Ancelin, M. L., Vial, H. J. & Philippot, J. R. (1985). Inhibitors of choline transport into Plasmodium-infected erythrocytes are effective antiplasmodial compounds in vitro. Biochemical Pharmacology 34, 4068–71.CrossRefGoogle ScholarPubMed
Beaumelle, B. D. & Vial, H. J. (1986). Modification of the fatty acid composition of phospholipids and neutral lipids after infection of the simian erythrocyte by Plasmodium knowlesi. Biochimica et Biophysica Acta 877, 262–70.CrossRefGoogle ScholarPubMed
Cenedella, R. G. (1968). Lipid synthesis from glucose carbon by Plasmodium berghei in vitro. American Journal of Tropical Medicine and Hygiene 17, 680–4.CrossRefGoogle Scholar
Das, I., De Belleroche, J., Moore, C. & Rose, F. C. (1986). Determination of free choline in plasma and erythrocyte samples and choline derived from membrane phosphatidylcholine by chemiluminescent method. Analytical Biochemistry 152, 178–82.CrossRefGoogle Scholar
Dittmer, D. S. (1962). Blood and Other Body Fluids. Federation of the American Society of Experimental Biology: Washington.Google Scholar
Ginsburg, H., Kutner, S., Krugliak, M. & Cabantchik, Z. (1985). Characterization of permeation pathways appearing in the host membrane of Plasmodium falciparum infected red blood cells. Molecular and Biochemical Parasitology 14, 313–22.CrossRefGoogle ScholarPubMed
Holz, G. G. (1977). Lipids and the malarial parasite. Bulletin of the World Health Organization 55, 237–48.Google ScholarPubMed
Homewood, C. A. & Neame, K. D. (1976). A comparison of methods used for the removal of white cells from malaria-infected blood. Annals of Tropical Medicine and Parasitology 70, 249–51.CrossRefGoogle ScholarPubMed
Jensen, J. B. & Trager, W. (1977). Plasmodium falciparum in culture: use of outdated erythrocytes and description of the candle method. Journal of Parasitology 63, 883–6.CrossRefGoogle ScholarPubMed
Lawrence, C. W. & Cenedella, R. G. (1969). Lipid content of Plasmodium berghei infected rat red blood cells. Experimental Parasitology 26, 181–6.CrossRefGoogle ScholarPubMed
Moll, G. N., Vial, H. J., Ancelin, M. L., Op Den Kamp, J., Roelofsen, B. & Van Deenen, L. L. (1988). Phospholipid uptake by Plasmodium knowlesi infected erythrocytes. FEBS Letters 232, 341–6.CrossRefGoogle ScholarPubMed
Muller, W. E. & Wollert, J. (1979). Human serum albumin as a silent receptor for drugs and endogenous substances. Pharmacology 19, 5967.CrossRefGoogle ScholarPubMed
Rock, R. C. (1971). Incorporation of [14C]-labelled fatty acids into lipids of rhesus erythrocytes and Plasmodium knowlesi in vitro. Comparative Biochemistry and Physiology 40B, 893906.Google ScholarPubMed
Rock, R. C, Standefer, J. C., Cook, R. T., Little, W. & Sprinz, H. (1971). Lipid composition of Plasmodium knowlesi membranes: comparison of parasites and microsomal subfractions with host Rhesus erythrocyte membranes. Comparative Biochemistry and Physiology 38B, 425–37.Google Scholar
Rowe, A. W., Eyster, R. E. & Kellner, A. (1968). Liquid nitrogen preservation of red-blood cells for transfusion. Cryobiology 5, 119–28.CrossRefGoogle ScholarPubMed
Sherman, I. W. (1979). Biochemistry of Plasmodium (Malarial parasites). Microbiological Review 43, 453–95.CrossRefGoogle ScholarPubMed
Sherman, I. W. (1988). Mechanisms of molecular trafficking in malaria. Parasitology 96, 857–81.CrossRefGoogle ScholarPubMed
Van Deenen, L. L. M. & De Gier, J. (1975). Lipids of the red cell membrane. In The Red Blood Cell (ed. Surgenor, D.), pp. 147211, New York: Academic Press.Google Scholar
Van Der Schaft, P. H., Beaumelle, B., Vial, H., Roelofsen, B., Op Den Kamp, J. & Van Deenen, L. L. (1987). Phospholipid organization in monkey erythrocytes upon Plasmodium knowlesi infection. Biochimica et Biophysica Acta 901, 114.CrossRefGoogle ScholarPubMed
Vial, H. J., Philippot, J. R. & Wallach, D. F. (1984 a). A reevaluation of the status of cholesterol in erythrocytes infected by Plasmodium knowlesi and Plasmodium falciparum. Molecular and Biochemical Parasitology 13, 5365.CrossRefGoogle Scholar
Vial, H. J., Thuet, M., Ancelin, M. L., Philippot, J. R. & Chavis, C. (1984 b). Phospholipid metabolism as a new target for malaria chemotherapy: mechanism of action of D-2-amino-1-butanol. Biochemical Pharmacology 33, 2761–70.CrossRefGoogle ScholarPubMed
Vial, H. J., Thuet, M., Broussal, J. & Philippot, J. R. (1982 a). Phospholipid biosynthesis by Plasmodium knowlesi-infected erythrocytes: the incorporation of phospholipid precursors and the identification of previously undetected metabolic pathways. Journal of Parasitology 68, 379–91.CrossRefGoogle ScholarPubMed
Vial, H. J., Thuet, M. & Philippot, J. R. (1982 b). Phospholipid biosynthesis in synchronous Plasmodium falciparum cultures. Journal of Protozoology 29, 258–63.CrossRefGoogle ScholarPubMed
VialH, J. H, J., Thuet, M. & Philippot, J. R. (1984c). Cholinephosphotransferase and ethanolaminephosphotransferase activities in P. knowlesi infected erythrocytes. Their use as parasite specific markers. Biochimica Biophysica Acta 795, 372–83.CrossRefGoogle Scholar
Wickam, J. M., Dennis, J. & Mitchell, G. H. (1980). Long term cultivation of simian malaria parasite (Plasmodium knowlesi) in a semi-automated apparatus. Transactions of the Royal Society of Tropical Medicine and Hygiene 74, 789–92.CrossRefGoogle Scholar
Wunderlich, F., Helwig, M., Schillinger, G., Vial, H., Philippot, J. & Speth, V., (1987). Isolation and characterization of parasites and host cell ghosts from erythrocytes infected with Plasmodium chabaudi. Molecular and Biochemical Parasitology 23, 103–15.CrossRefGoogle ScholarPubMed