Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-27T16:52:33.347Z Has data issue: false hasContentIssue false

Phloroglucinol derivatives from Hypericum species trigger mitochondrial dysfunction in Leishmania amazonensis

Published online by Cambridge University Press:  27 February 2018

Ana Paula Aquistapase Dagnino
Affiliation:
Laboratório de Imunologia, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, RS, Brazil Programa de Pós-Graduação em Ciências da Saúde, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, RS, Brazil
Camila Saporiti Mesquita
Affiliation:
Laboratório de Imunologia, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, RS, Brazil
Gilson Pires Dorneles
Affiliation:
Laboratório de Imunologia, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, RS, Brazil Programa de Pós-Graduação em Ciências da Saúde, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, RS, Brazil
Vivian de Oliveira Nunes Teixeira
Affiliation:
Laboratório de Imunologia, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, RS, Brazil Programa de Pós-Graduação em Ciências da Saúde, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, RS, Brazil
Francisco Maikon Corrêa de Barros
Affiliation:
Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul, Av. Ipiranga 2752, 90610-000 Porto Alegre, RS, Brazil
Gari Vidal Ccana-Ccapatinta
Affiliation:
Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul, Av. Ipiranga 2752, 90610-000 Porto Alegre, RS, Brazil
Simone Gonçalves Fonseca
Affiliation:
Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, 74605-050 Goiania, GO, Brazil
Marta Chagas Monteiro
Affiliation:
Programa de Pós-graduação em Ciências Farmacêuticas, Instituto de Ciências da Saúde, Universidade Federal do Pará/UFPA, 66075-110 Belém, PA, Brazil
Luiz Carlos Rodrigues Júnior
Affiliation:
Laboratório de Imunologia, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, RS, Brazil
Alessandra Peres
Affiliation:
Laboratório de Imunologia, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, RS, Brazil Programa de Pós-Graduação em Ciências da Reabilitação, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, RS, Brazil Centro Universitário Metodista IPA, Rua Coronel Joaquim Pedro Salgado, 80, 90420-060, Porto Alegre, RS, Brazil
Gilsane Lino von Poser
Affiliation:
Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul, Av. Ipiranga 2752, 90610-000 Porto Alegre, RS, Brazil
Pedro Roosevelt Torres Romão*
Affiliation:
Laboratório de Imunologia, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, RS, Brazil Programa de Pós-Graduação em Ciências da Saúde, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, RS, Brazil Programa de Pós-Graduação em Biociências, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, RS, Brazil
*
Author for correspondence: Pedro Roosevelt Torres Romão, E-mail: [email protected]

Abstract

Bioactive molecules isolated from plants are promising sources for the development of new therapies against leishmaniasis. We investigated the leishmanicidal activity of cariphenone A (1), isouliginosin B (2) and uliginosin B (3) isolated from Hypericum species. Promastigotes and amastigotes of Leishmania amazonensis were incubated with compounds 1–3 at concentrations 1–100 µm for 48 h. The anti-promastigote effect of compounds was also tested in combinations. The cytotoxicity against macrophages and human erythrocytes were determined using the 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide (MTT) method and hemolysis assay, respectively. The compounds 1–3 showed high leishmanicidal activity against promastigotes, IC50 values of 10.5, 17.5 and 11.3 µm, respectively. Synergistic interactions were found to the associations of compounds 1 and 2 [Σ fractional inhibitory concentration (FIC) = 0.41], and 2 and 3 (ΣFIC = 0.28) on promastigotes. All Hypericum compounds induced mitochondrial hyperpolarization and reactive oxygen species production in promastigotes. The compounds showed low cytotoxicity toward mammalian cells, high selectivity index and killed intracellular amastigotes probably mediated by oxidative stress. These results indicate that these compounds are promising candidates for the development of drugs against leishmaniasis.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Antonello, AM, Sartori, T, Folmer Correa, AP, Brandelli, A, Heermann, R, Rodrigues Júnior, LC, Peres, A, Romão, PRT and Silva, OS (2017) Entomopathogenic bacteria Photorhabdus luminescens as drug source against Leishmania Amazonensis. Parasitology 21, 110.Google Scholar
Basselin, M, Denise, H, Coombs, GH and Barrett, MP (2002) Resistance to pentamidine in Leishmania mexicana involves exclusion of the drug from the mitochondrion. Antimicrobial Agents and Chemotherapy 46, 37313738.Google Scholar
Bernardi, AP, Ferraz, AB, Albring, DV, Bordignon, SA, Schripsema, J, Bridi, R, Dutra-Filho, CS, Henriques, AT and von Poser, GL (2005) Benzophenones from Hypericum carinatum. Journal of Natural Products 68, 784786.Google Scholar
Bharate, SB and Singh, IP (2011) Quantitative structure-activity relationship study of phloroglucinol-terpene adducts as anti-leishmanial agents. Bioorganic & Medicinal Chemistry Letters 21, 43104315.Google Scholar
Brenzan, MA, Santos, AO, Nakamura, CV, Filho, BP, Ueda-Nakamura, T, Young, MC, Correa, AG, Junior, JA, Morgado-Diaz, JA and Cortez, DA (2012) Effects of (-) mammea A/BB isolated from Calophyllum brasiliense leaves and derivatives on mitochondrial membrane of Leishmania amazonensis. Phytomedicine: International Journal of Phytotherapy and Phytopharmacology 19, 223230.Google Scholar
Cargnin, ST, Vieira Pde, B, Cibulski, S, Cassel, E, Vargas, RM, Montanha, J, Roehe, P, Tasca, T and von Poser, GL (2013) Anti-Trichomonas vaginalis activity of Hypericum polyanthemum extract obtained by supercritical fluid extraction and isolated compounds. Parasitology International 62, 112117.Google Scholar
Ccana-Ccapatinta, GV, Stolz, ED, da Costa, PF, Rates, SM and von Poser, GL (2014) Acylphloroglucinol derivatives from Hypericum andinum: antidepressant-like activity of andinin A. Journal of Natural Products 77, 23212325.Google Scholar
Ccana-Ccapatinta, GV, Barros, FMC, Bridi, H and von Poser, GL (2015) Dimeric acylphloroglucinols in Hypericum species from Brathys and Trigynobrathys sections. Phytochemistry Reviews 14, 2550.Google Scholar
Costa Junior, JS, de Almeida, AA, de Barros Falcao Ferraz, A, Rossatto, RR, Silva, TG, Silva, PB, Militao, GC, das Gracas Lopes Cito, AM, Santana, LC, de Amorim Carvalho, FA and Freitas, RM (2013) Cytotoxic and leishmanicidal properties of garcinielliptone FC, a prenylated benzophenone from Platonia insignis. Natural Product Research 27, 470474.Google Scholar
Dagnino, AP, Barros, FM, Ccana-Ccapatinta, GV, Prophiro, JS, Poser, GL and Romao, PR (2015) Leishmanicidal activity of lipophilic extracts of some Hypericum species. Phytomedicine: International Journal of Phytotherapy and Phytopharmacology 22, 7176.Google Scholar
da Silva, RR, da Silva, BJ, Rodrigues, AP, Farias, LH, da Silva, MN, Alves, DT, Bastos, GN, do Nascimento, JL and Silva, EO (2015) In vitro biological action of aqueous extract from roots of Physalis angulata against Leishmania (Leishmania) amazonensis. BMC Complementary and Alternative Medicine 15, 249.Google Scholar
de Almeida, L, Alves, KF, Maciel-Rezende, CM, Jesus Lde, O, Pires, FR, Junior, CV, Izidoro, MA, Judice, WA, dos Santos, MH and Marques, MJ (2015) Benzophenone derivatives as cysteine protease inhibitors and biological activity against Leishmania (L.) amazonensis amastigotes. Biomedicine & Pharmacotherapy 75, 9399.Google Scholar
Don, R and Ioset, JR (2014) Screening strategies to identify new chemical diversity for drug development to treat kinetoplastid infections. Parasitology 141, 140146.Google Scholar
Fenner, R, Sortino, M, Rates, SM, Dall'Agnol, R, Ferraz, A, Bernardi, AP, Albring, D, Nor, C, von Poser, G, Schapoval, E and Zacchino, S (2005) Antifungal activity of some Brazilian Hypericum species. Phytomedicine: International Journal of Phytotherapy and Phytopharmacology 12, 236240.Google Scholar
Ferlini, C and Scambia, G (2007) Assay for apoptosis using the mitochondrial probes, Rhodamine123 and 10-N-nonyl acridine orange. Nature Protocols 2, 31113114.Google Scholar
França, HS, Kuster, RM, Rito, PN, Oliveira, AP, Teixeira, LA and Rocha, L (2009) Atividade antibacteriana de floroglucinóis e do extrato hexânico de Hypericum brasiliense Choysi. Química Nova 32, 11031106.Google Scholar
Fritz, D, Venturi, CR, Cargnin, S, Schripsema, J, Roehe, PM, Montanha, JA and von Poser, GL (2007) Herpes virus inhibitory substances from Hypericum connatum Lam., a plant used in southern Brazil to treat oral lesions. Journal of Ethnopharmacology 113, 517520.Google Scholar
Gauthier, C, Legault, J, Girard-Lalancette, K, Mshvildadze, V and Pichette, A (2009) Haemolytic activity, cytotoxicity and membrane cell permeabilization of semi-synthetic and natural lupane- and oleanane-type saponins. Bioorganic & Medicinal Chemistry 17, 20022008.Google Scholar
Gille, L and Nohl, H (2001) The ubiquinol/bc1 redox couple regulates mitochondrial oxygen radical formation. Archives of Biochemistry and Biophysics 388, 3438.Google Scholar
Laster, SM, Wood, JG and Gooding, LR (1988) Tumor necrosis factor can induce both apoptic and necrotic forms of cell lysis. Journal of Immunology 141, 26292634.Google Scholar
Lee, I, Bender, E and Kadenbach, B (2002) Control of mitochondrial membrane potential and ROS formation by reversible phosphorylation of cytochrome c oxidase. Molecular and Cellular Biochemistry 234–235, 6370.Google Scholar
Luque-Ortega, JR, Reuther, P, Rivas, L and Dardonville, C (2010) New benzophenone-derived bisphosphonium salts as leishmanicidal leads targeting mitochondria through inhibition of respiratory complex II. Journal of Medicinal Chemistry 53, 17881798.Google Scholar
Maciel-Rezende, CM, de Almeida, L, Costa, ED, Pires, FR, Alves, KF, Viegas, C Jr., Dias, DF, Doriguetto, AC, Marques, MJ and dos Santos, MH (2013) Synthesis and biological evaluation against Leishmania amazonensis of a series of alkyl-substituted benzophenones. Bioorganic & Medicinal Chemistry 21, 31143119.Google Scholar
Menezes, CB, Rigo, GV, Bridi, H, da Silva Trentin, D, Macedo, AJ, Von Poser, GL and Tasca, T (2017) The anti-Trichomonas vaginalis phloroglucinol derivative isoaustrobrasilol B modulates extracellular nucleotides hydrolysis. Chemical Biology & Drug Design 90, 811819.Google Scholar
Monzote, L, Lackova, A, Staniek, K, Cuesta-Rubio, O and Gille, L (2015) Role of mitochondria in the leishmanicidal effects and toxicity of acyl phloroglucinol derivatives: nemorosone and guttiferone A. Parasitology 142, 12391248.Google Scholar
Mukherjee, A, Padmanabhan, PK, Sahani, MH, Barrett, MP and Madhubala, R (2006) Roles for mitochondria in pentamidine susceptibility and resistance in Leishmania donovani. Molecular and Biochemical Parasitology 145, 110.Google Scholar
Nava-Zuazo, C, Estrada-Soto, S, Guerrero-Alvarez, J, Leon-Rivera, I, Molina-Salinas, GM, Said-Fernandez, S, Chan-Bacab, MJ, Cedillo-Rivera, R, Moo-Puc, R, Miron-Lopez, G and Navarrete-Vazquez, G (2010) Design, synthesis, and in vitro antiprotozoal, antimycobacterial activities of N-{2-[(7-chloroquinolin-4-yl)amino]ethyl}ureas. Bioorganic & Medicinal Chemistry 18, 63986403.Google Scholar
Romao, PR, Fonseca, SG, Hothersall, JS, Noronha-Dutra, AA, Ferreira, SH and Cunha, FQ (1999) Glutathione protects macrophages and Leishmania major against nitric oxide-mediated cytotoxicity. Parasitology 118, 559566.Google Scholar
Rotureau, B, Gego, A and Carme, B (2005) Trypanosomatid protozoa: a simplified DNA isolation procedure. Experimental Parasitology 111, 207209.Google Scholar
Seifert, K and Croft, SL (2006) In vitro and in vivo interactions between miltefosine and other antileishmanial drugs. Antimicrobial Agents and Chemotherapy 50, 7379.Google Scholar
Sen, N, Das, BB, Ganguly, A, Mukherjee, T, Tripathi, G, Bandyopadhyay, S, Rakshit, S, Sen, T and Majumder, HK (2004) Camptothecin induced mitochondrial dysfunction leading to programmed cell death in unicellular hemoflagellate Leishmania donovani. Cell Death and Differentiation 11, 924936.Google Scholar
Sereno, D, Holzmuller, P, Mangot, I, Cuny, G, Ouaissi, A and Lemesre, JL (2001) Antimonial-mediated DNA fragmentation in Leishmania infantum amastigotes. Antimicrobial Agents and Chemotherapy 45, 20642069.Google Scholar
Sidana, J, Singh, S, Arora, SK, Foley, WJ and Singh, IP (2011) Formylated phloroglucinols from Eucalyptus loxophleba foliage. Fitoterapia 82, 11181122.Google Scholar
Singh, S, Sarma, S, Katiyar, SP, Das, M, Bhardwaj, R, Sundar, D and Dubey, VK (2015) Probing the molecular mechanism of hypericin-induced parasite death provides insight into the role of spermidine beyond redox metabolism in Leishmania donovani. Antimicrobial Agents and Chemotherapy 59, 1524.Google Scholar
Socolsky, C, Salamanca, E, Gimenez, A, Borkosky, SA and Bardon, A (2016) Prenylated acylphloroglucinols with leishmanicidal activity from the fern Elaphoglossum lindbergii. Journal of Natural Products 79, 98105.Google Scholar
Van Hellemond, JJ and Tielens, AG (1997) Inhibition of the respiratory chain results in a reversible metabolic arrest in Leishmania promastigotes. Molecular and Biochemical Parasitology 85, 135138.Google Scholar
Van Hellemond, JJ, Van der Meer, P and Tielens, AG (1997) Leishmania infantum promastigotes have a poor capacity for anaerobic functioning and depend mainly on respiration for their energy generation. Parasitology 114, 351–360.Google Scholar
Wagenpfeil, S, Treiber, U and Lehmer, A (2006) Statistical analysis of combined dose effects for experiments with two agents. Artificial Intelligence in Medicine 37, 6571.Google Scholar
Wu, D and Yotnda, P (2011) Production and detection of reactive oxygen species (ROS) in cancers. Journal of Visualized Experiments: JoVE. 57, e3357.Google Scholar