Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-11T06:02:18.162Z Has data issue: false hasContentIssue false

Parasitic infections in mixed system-based heliciculture farms: dynamics and key epidemiological factors

Published online by Cambridge University Press:  02 January 2013

P. SEGADE
Affiliation:
Laboratorio de Parasitología, Facultad de Biología, Edificio de Ciencias Experimentales, Campus de Lagoas-Marcosende s/n, Universidad de Vigo, 36310 Vigo, Spain
J. GARCÍA-ESTÉVEZ
Affiliation:
Laboratorio de Parasitología, Facultad de Biología, Edificio de Ciencias Experimentales, Campus de Lagoas-Marcosende s/n, Universidad de Vigo, 36310 Vigo, Spain
C. ARIAS
Affiliation:
Laboratorio de Parasitología, Facultad de Biología, Edificio de Ciencias Experimentales, Campus de Lagoas-Marcosende s/n, Universidad de Vigo, 36310 Vigo, Spain
R. IGLESIAS*
Affiliation:
Laboratorio de Parasitología, Facultad de Biología, Edificio de Ciencias Experimentales, Campus de Lagoas-Marcosende s/n, Universidad de Vigo, 36310 Vigo, Spain
*
*Corresponding author: Laboratorio de Parasitología, Facultad de Biología (Edificio de Ciencias Experimentales), Campus de Lagoas-Marcosende s/n, Universidad de Vigo, 36310 Vigo, Spain. Tel: +34 986812394. Fax: +34 986812565. E-mail: [email protected]

Summary

Heliciculture is an excellent alternative to obtain edible snails but its viability is seriously threatened by pathogens. A parasitological survey was conducted in 3 mixed system-based heliciculture farms in Galicia (NW Spain), with the species Tetrahymena rostrata, Tetrahymena limacis, Tetratrichomonas limacis, Cryptobia helicogenae, Brachylaima aspersae (metacercariae and sporocysts), Alloionema appendiculatum, Nemhelix bakeri, and Riccardoella limacum being commonly found infecting Helix aspersa aspersa (petit-gris) snails. With the exception of C. helicogenae, N. bakeri, and B. aspersae sporocysts, all species were also detected in Helix aspersa maxima (gros-gris) snails, although generally with lower parameters. Most monoxenous infections, and consequently multiple parasitism, exhibited a rising trend during the first 2 months of intensive mating, with tendencies being slowed down or even reversed during the third month as a result of accumulated mortality and a sampling-derived reduction in host density. No parasites were vertically transmitted and infections were initially acquired from invading gastropod and micromammal reservoirs during fattening. Finally, artificial hibernation reduced significantly the prevalence of most species. These results confirm the importance of parasites in heliciculture and emphasize the need to prevent the entry of wild reservoirs into the farms and to rapidly remove the carcasses of dead snails from the reproduction units and fattening pens.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Barker, G. M. (1993). Population regulation of Deroceras slugs (Agriolimacidae) in northern New Zealand pastures with particular reference to the role of Tetrahymena rostrata (Kahl) (Ciliata) and Microsporidium novacastriensis (Jones & Selman) (Microspora). In Proceedings of the 3rd International Congress of Medical and Applied Malacology, Elizabeth McArthur Agricultural Institute, Camden, Australia.Google Scholar
Brooks, W. M. (1968). Tetrahymenid ciliates as parasites of the gray garden slug. Hilgardia 39, 205276.CrossRefGoogle Scholar
Bush, A. O., Lafferty, K. D., Lotz, J. M. and Shostak, A. W. (1997). Parasitology meets ecology on its own terms: Margolis et al. revisited. Journal of Parasitology 83, 575583.CrossRefGoogle Scholar
Cabaret, J., Morand, S., Aubert, C. and Yvore, P. (1988). Snail farming: a survey of breeding management, hygiene and parasitism of the garden snail, Helix aspersa Müller. Journal of Molluscan Studies 54, 209214.CrossRefGoogle Scholar
Chevallier, H. (1990). Breeding in outdoor pens of the edible snail Helix aspersa maxima. Snail Farming Research 3, 3235.Google Scholar
Coleman, D. C., Crossley, D. A. Jr. and Hendrix, P. F. (2004). Fundamentals of Soil Ecology. Academic Press, San Diego, CA, USA.Google Scholar
Corliss, J. O. (1970). The comparative systematics of species comprising the hymenostome ciliate genus Tetrahymena. Journal of Protozoology 17, 198209.CrossRefGoogle Scholar
Daguzan, J. (1989). L'elevage de l'escargot au heliciculture, en France: état actuel et perspectives. Haliotis 19, 165175.Google Scholar
De Grisse, A. (1991). Automatisatie van de vesmesting van Escargots. Mededelingen van de Faculteit Landbouwwetenschappen Rijksuniversiteit Gent 56, 8396.Google Scholar
Fain, A. (2004). Mites (Acari) parasitic and predaceous in terrestrial gastropods. In Natural Enemies of Terrestrial Molluscs (ed. Barker, G. M.), pp. 505524. CABI Publishing, Wallingford, UK.CrossRefGoogle Scholar
Fontanillas, J. C. and Pérez, T. (1987). El ácaro Riccardoella limacum (Schrank) en helícidos Helix aspersa (L.): hábitat y relación hospedador-parásito. Medicina Veterinaria 4, 663667.Google Scholar
Friedhoff, K. T., Kuhnigk, C. and Müller, I. (1991). Experimental infection in chickens with Chilomastix gallinarum, Tetratrichomonas gallinarum, and Tritrichomonas eberthi. Parasitology Research 77, 329334.CrossRefGoogle ScholarPubMed
Gómez, B. J. (2001). Structure and functioning of the reproductive system. In The Biology of Terrestrial Molluscs (ed. Barker, G. M.), pp. 307330. CABI Publishing, Wallingford, UK.CrossRefGoogle Scholar
Gomot-de Vaufleury, A. and Borgo, R. (2001). Experimental hybridization between two sub-species of snails (Helix aspersa aspersa and Helix aspersa maxima): consequences for fertility, survival and growth. Invertebrate Reproduction and. Development 40, 217226.CrossRefGoogle Scholar
Gomot, P. and Deray, A. (1990). The length of hibernation affects temperature-induced (25 °C) spermatogenic multiplication in Helix aspersa Müller. Experientia 46, 684686.CrossRefGoogle Scholar
Graham, F. J., Runham, N. W. and Ford, J. B. (1996). Long-term effects of Riccardoella limacum living in the lung of Helix aspersa. BCPC Symposium Proceedings: Slug and Snail Pests in Agriculture 66, 359364.Google Scholar
Grewal, P. S., Grewal, S. K., Tan, L. and Adams, B. J. (2003). Parasitism of molluscs by nematodes: types of associations and evolutionary trends. Journal of Nematology 35, 146156.Google ScholarPubMed
Haeussler, E. M., Piza, J., Schmera, D. and Baur, B. (2012). Intensity of parasitic mite infection decreases with hibernation duration of the host snail. Parasitology 139, 10381044.CrossRefGoogle ScholarPubMed
Kozloff, E. N. (1945). The morphology of Trichomonas limacis Dujardin. Journal of Morphology 77, 5360.CrossRefGoogle Scholar
Kozloff, E. N. (2004). Redescription of Cryptobia helicis Leidy, 1846 (Kinetoplasta: Bodonea: Cryptobiidae), disposition of flagellates mistakenly assigned to this species, and description of a new species from a North American pulmonate snail. Acta Protozoologica 43, 123132.Google Scholar
Morand, S. (1985). Premiere approche du parasitisme de l'escargot petit-gris (Helix aspersa M.) en elevage. Bulletin de la Société Française deParasitologie 1, 143146.Google Scholar
Morand, S. (1988 a). Cycle évolutif du Nemhelix bakeri Morand et Petter (Nematoda, Cosmocercidae), parasite de l'appareil génital de l'Helix aspersa Müller (Gastropoda, Helicidae). Canadian Journal of Zoology 66, 17961802.CrossRefGoogle Scholar
Morand, S. (1988 b). Elements d'epidemiologie de Nemhelix bakeri Morand et Petter (Nematoda, Cosmocercidae), parasite de l'appareil genital de Helix aspersa Müller (Gastropoda, Helicidae). Haliotis 18, 297304.Google Scholar
Morand, S. (1989). Influence du Nématode Nemhelix bakeri Morand et Petter sur la reproduction de l'escargot-hôte Helix aspersa Müller. Comptes Rendus de l'Académie des Sciences – Series III – Sciences de la Vie 309, 211214.Google Scholar
Morand, S. and Bonnet, J. C. (1989). Importance des nematodes en heliciculture et methode de prophylaxie. Haliotis 19, 6975.Google Scholar
Morand, S. and Daguzan, J. (1986). Contribution a l'etude du parasitisme de l'escargot petit-gris (Helix aspersa Müller): premiers resultats concernant l'acarien Riccardoella limacum (Schrank) et le nematode Alloionema appendiculatum (Schneider). Haliotis 15, 3139.Google Scholar
Morand, S., Wilson, M. J. and Glen, D. M. (2004). Nematodes (Nematoda) parasitic in terrestrial gastropods. In Natural Enemies of Terrestrial Molluscs (ed. Barker, G. M.), pp. 525557. CABI Publishing, Wallingford, UK.CrossRefGoogle Scholar
Saleuddin, A. S. M. (1972). Fine structure of Tetratrichomonas limacis (Dujardin). Canadian Journal of Zoology 50, 695701.CrossRefGoogle Scholar
Schüpbach, H. U. and Baur, B. (2008 a). Experimental evidence for a new transmission route in a parasitic mite and its mucus-dependent orientation towards the host snail. Parasitology 135, 16791684.CrossRefGoogle Scholar
Schüpbach, H. U. and Baur, B. (2008 b). Parasitic mites influence fitness components of their host, the land snail Arianta arbustorum. Invertebrate Biology 127, 350356.CrossRefGoogle Scholar
Schüpbach, H. U. and Baur, B. (2010). Within- and among-family variation in parasite load and parasite-induced mortality in the land snail Arianta arbustorum, a host of parasitic mites. Journal of Parasitology 96, 830832.CrossRefGoogle ScholarPubMed
Segade, P., Crespo, C., Garcia, N., Garcia-Estevez, J. M., Arias, C. and Iglesias, R. (2011). Brachylaima aspersae n. sp. (Digenea: Brachylaimidae) infecting farmed snails in NW Spain: morphology, life cycle, pathology, and implications for heliciculture. Veterinary Parasitology 175, 273286.CrossRefGoogle Scholar
Segade, P., Kher, C. P., Lynn, D. H. and Iglesias, R. (2009). Morphological and molecular characterization of renal ciliates infecting farmed snails in Spain. Parasitology 136, 771782.CrossRefGoogle ScholarPubMed
Tasca, T. and De Carli, G. A. (2007). Morphological study of Tetratrichomonas didelphidis islolated from opossum Lutreolina crassicaudata by scanning electron microscopy. Parasitology Research 100, 13851388.CrossRefGoogle Scholar
Wilson, M. J., Coyne, C. and Glen, D. M. (1998). Low temperatures suppress growth of the ciliate parasite, Tetrahymena rostrata, and pathogenicity to field slugs, Deroceras reticulatum. Biocontrol Science and Technology 8, 181184.CrossRefGoogle Scholar