Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-10T22:22:08.922Z Has data issue: false hasContentIssue false

Parasitic disease in amphibians: control by the regulation of worm burdens

Published online by Cambridge University Press:  06 April 2009

R. C. Tinsley
Affiliation:
School of Biological Sciences, University of Bristol, Woodland Road, Bristol BS8 1UG, UK

Summary

This review considers three case studies based on macroparasites of anurans: (a) natural infections in the permanently-aquatic Xenopus laevis which represent the worm burdens acquired, and the implications for pathology, when hosts are exposed to continuous, year-round, transmission; (b) the desert toad, Scaphiopus couchii, which experiences invasion very briefly each year and provides a simplified system involving only a single significant infection (Pseudodiplorchis americanus); (c) the mesic Bufo bufo which has been the subject of experimental laboratory studies designed to measure the effects of Rhabdias bufonis infection on host growth, physical performance and survival. Experimental manipulation of both Scaphiopus and Bufo provide quantitative data on disease effects of macroparasites, including precise measurements of parasite-induced host mortality. Field data for Xenopus and Scaphiopus show that, despite high initial worm burdens from efficient transmission, infection levels at parasite maturity are modulated below those leading to significant disease. Experimental data for Scaphiopus and Bufo have documented the time-course and magnitude of this decline in intensities, and there is circumstantial evidence for Scaphiopus that this regulation is host-mediated. Immunological studies on Xenopus show that disease effects of the pathogenic Pseudocapillaroides xenopodis are exacerbated in thymectomised hosts and reversed by implantation of thymuses from MHC-compatible donors. Thus, whilst factorial experiments can demonstrate the potential of helminths to cause significant disease and mortality in anuran host-macroparasite interactions, powerful post-invasion regulation of worm burdens appears to exert a strong control of parasite-induced disease in natural host populations.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Anderson, R. M. & May, R. M. (1978). Regulation and stability of host-parasite population interactions. I. Regulatory processes. Journal of Animal Ecology 47, 219–47.CrossRefGoogle Scholar
Barnard, C. J. & Behnke, J. M. (1990). Parasitism and Host Behaviour. London: Taylor & Francis.CrossRefGoogle Scholar
Cable, J. & Tinsley, R. C. (1992 a). Microsporidean hyperparasites and bacteria associated with Pseudodiplorchis americanus (Monogenea: Polystomatidae). Canadian Journal of Zoology 70, 523–9.CrossRefGoogle Scholar
Cable, J. & Tinsley, R. C. (1992 b). Unique ultrastructural adaptations of Pseudodiplorchis americanus(Polystomatidae: Monogenea) to a sequence of hostile conditions following host infection. Parasitology 105, 229–41.CrossRefGoogle Scholar
Cohen, N., Effrige, N. J., Parsons, S. C. V., Rollins-Smith, L. A., Nagata, S. & Albright, D. (1984). Identification and treatment of a lethal nematode (Capillaria xenopodis) infestation in the South African frog, Xenopus laevis. Developmental and Comparative Immunology 8, 739–41.CrossRefGoogle ScholarPubMed
Combes, C. (1972 a). Influence of the behaviour of amphibians on helminth life cycles. In Behavioural Aspects of Parasite Transmission, (ed. Canning, E. U. & Wright, C. A.), pp. 151–70. London: Linnean Society of London and Academic Press.Google Scholar
Combes, C. (1972 b). Ecologie des Polystomatidae (Monogenea): facteurs influençant le volume et le rythme de la ponte. International Journal for Parasitology 2, 233–8.CrossRefGoogle Scholar
du Pasquier, L., Wilson, M. & Robert, J. (1995). The immune system of Xenopus: special focus on B cell development and immunoglobulin genes. In The Biology of Xenopus (ed. Tinsley, R. C. & Kobel, H. R.), pp. 301–13. Oxford: Oxford University Press. (In press.)Google Scholar
Elepfandt, A. (1995). Sensory perception and the lateral line system in the clawed frog, Xenopus. In The Biology of Xenopus. (ed. Tinsley, R. C. & Kobel, H. R.), pp. 97120. Oxford: Oxford University Press. (In press.)Google Scholar
Elkan, E. (1960). Some interesting pathological cases in amphibians. Proceedings of the Zoological Society of London 134, 275–96.CrossRefGoogle Scholar
Elkan, E. & Murray, R. W. (1952). A larval trematode infection of the lateral line system of the toad Xenopus laevis (Daudin). Proceedings of the Zoological Society of London 122, 121–6.CrossRefGoogle Scholar
Ferguson, R. R. & Appleton, C. C. (1988). Some aspects of the morphology, population structure and larval biology of Cephalochlamys namaquensis (Cestoda: Diphyllidea), a parasite of the clawed toad, Xenopus laevis. South African Journal of Zoology 23, 117–23.CrossRefGoogle Scholar
Gill, D. E. & Mock, B. A. (1985). Ecological and evolutionary dynamics of parasites: the case of Tryanosoma diemyctyli in the red-spotted newt Notophthalmus viridescens. In Ecology and Genetics of Host-Parasite Interactions. (ed. Rollinson, D. & Anderson, R. M.), pp. 157–83. London: Academic Press Inc.Google Scholar
Goater, C. P. (1992). Experimental population dynamics of Rhabdias bufonis (Nematoda) in toads (Bufo bufo): density-dependence in the primary infection. Parasitology 104, 179–87.CrossRefGoogle ScholarPubMed
Goater, C. P. (1994). Growth and survival of postmetamorphic toads: interactions among larval history, density and parasitism. Ecology 75, 2264–74.CrossRefGoogle Scholar
Goater, C. P. & Ward, P. I. (1992). Negative effects of Rhabdias bufonis (Nematoda) on the growth and survival of toads (Bufo bufo). Oecologia 89, 161–5.CrossRefGoogle ScholarPubMed
Goater, C. P., Semlitsch, R. D. & Bernasconi, M. V. (1993). Effects of body size and parasite infection on the locomotory performance of juvenile toads, Bufo bufo. Oikos 66, 129–36.CrossRefGoogle Scholar
Harris, P. D. & Tinsley, R. C. (1987). The biology of Gyrdicotylus gallieni (Gyrodactylidea), an unusual viviparous monogenean from the African clawed toad, Xenopus laevis. Journal of Zoology (London) 212, 325–46.CrossRefGoogle Scholar
Horton, J. D., Horton, T. L. & Ritchie, P. (1995). Immune system of Xenopus: T cell biology. In The Biology of Xenopus. (ed. Tinsley, R. C. & Kobel, H. R.), pp. 279–99. Oxford: Oxford University Press. (In press.)Google Scholar
Jackson, H. C. & Tinsley, R. C. (1988 a). Environmental influences on egg production by the monogenean Protopolystoma xenopodis. Parasitology 97, 115–28.CrossRefGoogle Scholar
Jackson, H. C. & Tinsley, R. C. (1988 b). The capacity for viable egg production by the monogean Protopolystoma xenopodis in single and multiple infections. International Journal for Parasitology 18, 585–9.CrossRefGoogle Scholar
Jackson, J. A. & Tinsley, R. C. (1994). Infrapopulation dynamics of Gyrdicotylus gallieni (Monogenea: Gyrodactylidae). Parasitology 108, 447–52.CrossRefGoogle ScholarPubMed
Kreil, G. (1995). Skin secretion in Xenopus laevis. In The Biology of Xenopus. (ed. Tinsley, R. C. & Kobel, H. R.), pp. 263–77. Oxford: Oxford University Press (In press.)Google Scholar
Macnae, W., Rock, L. & Makowski, M. (1973). Platyhelminths from the South African clawed toad, or platanna (Xenopus laevis). Journal of Helminthology 47, 199235.CrossRefGoogle Scholar
May, R. M. & Anderson, R. M. (1978). Regulation and stability of host-parasite population interactions. II. Destabilizing processes. Journal of Animal Ecology 47, 249–67.CrossRefGoogle Scholar
Merkle, S. & Hanke, W. (1988). Long-term starvation in Xenopus laevis Daudin – 1. Effects on general metabolism. Comparative Biochemistry and Physiology B89, 719–30.Google Scholar
Moravec, F. & Cosgrove, G. E. (1982). Pseudocapillaroides xenopi gen. et sp. nov. from the skin of the South African clawed frog, Xenopus laevis Daud. (Nematoda: Capillariidae). Revue de Zoologie Africaines 96, 129–37.Google Scholar
Nigrelli, R. F. & Maraventano, L. W. (1944). Pericarditis in Xenopus laevis caused by Diplostomulum xenopi sp. nov., a larval strigeid. Journal of Parasitology 30, 184–90.CrossRefGoogle Scholar
Parker, H. W. (1932). Scientific results of the Cambridge expedition to the East African lakes, 1930–31, 5, reptiles and amphibians. Journal of the Linnean Society of London Zoology 38, 213–29.CrossRefGoogle Scholar
Porter, A. (1938). The larval trematodes found in certain South African Mollusca with special reference to schistosomiasis (Bilharziasis). Publications of the South African Institute for Medical Research 42, 1492.Google Scholar
Prudhoe, S. & Bray, R. A. (1982). Platyhelminth Parasites of the Amphibia. Oxford: British Museum (Natural History); Oxford University Press.Google Scholar
Reichenbach-Klinke, H. & Elkan, E. (1965). The Principal Diseases of Lower Vertebrates. II Diseases of Amphibians. London: Academic Press.Google Scholar
Seymour, R. S. (1973). Energy metabolism of dormant spadefoot toads. Copeia 1973, 434–45.CrossRefGoogle Scholar
Smyth, J. D. & Smyth, M. M. (1980). Frogs as Host-Parasite Systems I. London: Macmillan.CrossRefGoogle Scholar
Thurston, J. P. (1967). The morphology and life-cycle of Cephalochlamys namaquensis (Cohn, 1906) (Cestoda: Pseudophyllidea) from Xenopus muelleri and X. laevis. Parasitology 57, 187200.CrossRefGoogle Scholar
Thurston, J. P. (1970). Studies on some Protozoa and helminth parasites of Xenopus, the African clawed toad. Revue de Zoologie et de Botanique Africaines 82, 349–36.Google Scholar
Tinsley, R. C. (1972). The adaptation for attachment by the Polystomatidae (Monogenoidea). Comptes Rendus Multicolloque Européen Parasitologie 1, 65–8.Google Scholar
Tinsley, R. C. (1973). Observations of Polystomatidae (Monogenoidea) from East Africa with a description of Polystoma makereri n. sp. Zeitschrift für Parasitenkunde 42, 251–63.CrossRefGoogle ScholarPubMed
Tinsley, R. C. (1983). Ovoviviparity in platyhelminth life cycles. Parasitology 86, 161–96.CrossRefGoogle ScholarPubMed
Tinsley, R. C. (1989). Effects of host sex on transmission success. Parasitology Today 5, 190–5.CrossRefGoogle ScholarPubMed
Tinsley, R. C. (1990 a). The influence of parasite infection on mating success in Spadefoot toads, Scaphiopus couchii. American Zoologist 30, 313–24.CrossRefGoogle Scholar
Tinsley, R. C. (1990 b). Host behaviour and opportunism in parasite life cycles. In Parasitism and Host Behaviour, (ed. Barnard, C. J. & Behnke, J. M.), pp. 158–92. London: Taylor & Francis.Google Scholar
Tinsley, R. C. (1993). Biologie des populations des monogenes polystomatidae. Bulletin Français de la Peche et de la Pisciculture 328, 120–36.CrossRefGoogle Scholar
Tinsley, R. C. (1995 a). Parasites of Xenopus. In The Biology of Xenopus. (ed. Tinsley, R. C. & Kobel, H. R.), pp. 233–61. Oxford: Oxford University Press. (In press.)Google Scholar
Tinsley, R. C. (1995 b). Evolutionary inferences from host and parasite co-speciation. In The Biology of Xenopus. (ed. Tinsley, R. C. & Kobel, H. R.), pp. 403–20. Oxford: Oxford University Press. (In press.)Google Scholar
Tinsley, R. C. & Earle, C. M. (1983). Invasion of vertebrate lungs by the polystomatid monogeneans Pseudodiplorchis americanus and Neodiplorchis scaphiopodis. Parasitology 86, 501–17.CrossRefGoogle Scholar
Tinsley, R. C. & Jackson, H. C. (1986). Intestinal migration in the life cycle of Pseudodiplorchis americanus (Monogenea). Parasitology 93, 451–69.CrossRefGoogle Scholar
Tinsley, R. C. & Jackson, H. C. (1988). Pulsed transmission of Pseudodiplorchis americanus between desert hosts (Scaphiopus couchii). Parasitology 97, 437–52.CrossRefGoogle Scholar
Tinsley, R. C. & Owen, R. W. (1975). Studies on the biology of Protopolystoma xenopodis (Monogenoidea): the oncomiracidium and life cycle. Parasitology 71, 445–63.CrossRefGoogle Scholar
Tinsley, R. C. & Owen, R. W. (1979). The morphology and biology of Xenopodistomum xenopodis from the gall bladder of the African clawed toad, Xenopus laevis. Journal of Helminthology 53, 307–16.CrossRefGoogle Scholar
Tinsley, R. C. & Sweeting, R. A. (1974). Studies on the biology and taxonomy of Diplostomulum (Tylodelphylus) xenopodis from the African clawed toad, Xenopus laevis. Journal of Helminthology 48, 247–63.CrossRefGoogle Scholar
Tinsley, R. C. & Tocque, K. (1995). The population dynamics of a desert anuran, Scaphiopus couchii. Australian Journal of Ecology 20, 376–84.CrossRefGoogle Scholar
Tinsley, R. C., Loumont, C. & Kobel, H. R. (1995). Geographical distribution and ecology. In The Biology of Xenopus. (ed. Tinsley, R. C. & Kobel, H. R.). Oxford: Oxford University Press. (In press.)Google Scholar
Tocque, K. (1993). The relationships between parasite burden and host reserves in the desert toad (Scaphiopus couchii), under natural environmental conditions. Journal of Animal Ecology 62, 683–93.CrossRefGoogle Scholar
Tocque, K. & Tinsley, R. C. (1991 a). Asymmetric reproductive output by the monogenean Pseudodiplorchis americanus. Parasitology 102, 213–20.CrossRefGoogle ScholarPubMed
Tocque, K. & Tinsley, R. C. (1991 b). The influence of desert temperature cycles on the reproductive biology of Pseudodiplorchis americanus (Monogenea). Parasitology 103, 111–20.CrossRefGoogle Scholar
Tocque, K. & Tinsley, R. C. (1992). Ingestion of host blood by the monogenean Pseudodiplorchis americanus: a quantitative analysis. Parasitology 104, 283–9.CrossRefGoogle Scholar
Tocque, K. & Tinsley, R. C. (1994 a). The relationship between Pseudodiplorchis americanus (Monogenea) density and host resources under controlled environmental conditions. Parasitology 108, 175–83.CrossRefGoogle ScholarPubMed
Tocque, K. & Tinsley, R. C. (1994 b). Survival of Pseudodiplorchis americanus (Monogenea) under controlled environmental conditions. Parasitology 108, 185–94.CrossRefGoogle ScholarPubMed
Tocque, K., Tinsley, R. C. & Lamb, T. (1995). Ecological constraints on feeding and growth of Scaphiopus couchii. Herpetological Journal 5, 257–65.Google Scholar
Van Der Lande, V. M. & Tinsley, R. C. (1976). Studies on the anatomy, life history and behaviour of Marsupiobdella africana (Hirudinea: Glossiphoniidae). Journal of Zoology (London) 180, 537–63.CrossRefGoogle Scholar
Wade, S. E. (1982). Capillaria xenopodis sp. n. (Nematoda: Trichuroidea) from the epidermis of the South African clawed frog (Xenopus laevis Daudin). Proceedings of the Helminthological Society of Washington 49, 8692.Google Scholar