Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-23T14:55:15.788Z Has data issue: false hasContentIssue false

On cyclical alterations in the Feulgen staining of nuclei during the development of nematodes

Published online by Cambridge University Press:  06 April 2009

L. Monné
Affiliation:
Department of Parasitology, State Veterinary Medical Institute, Stockholm 50, Sweden

Extract

In the Ascaroidea the germinal vesicle, the pronuclei and the nuclei of all the blastomeres prior to chromatin diminution are strongly Feulgen positive. The nuclei of the somatic cells, which become suddenly Feulgen negative upon chromatin diminution, gradually become strongly Feulgen positive again during subsequent development. The nuclei of the germ track cells which are not subjected to chromatin diminution remain strongly Feulgen positive during the whole development. In all the other metazoa, including the nematodes where chromatin diminution does not occur, the germinal vesicle, the synkaryon and the nuclei of the blastomeres during the earliest cleavage stages are Feulgen negative. The latter, however, become gradually strongly Feulgen positive again during the subsequent development. The nuclei of the female germ cells and the synkaryon of protozoa and plants have also been reported to be Feulgen negative. Thus, the Feulgen-positive nuclei of the definitive somatic cells always originate from Feulgen-negative nuclei, in the Ascaroidea from the Feulgen-negative nuclei of the blastomeres and in all other forms of life from the Feulgen-negative nuclei of the eggs. The Feulgen-positive nuclei of the germ cells also originate from Feulgen-negative nuclei except in the Ascaroidea, where they originate from Feulgen-positive nuclei. In the somatic track the sequence of Feulgen-positive nuclei is interrupted in all forms of life and during the germ track it is also interrupted in all forms of life except the Ascaroidea, where it is uninterrupted. These biologically important phenomena are discussed.

These investigations have been supported by a grant from the Knut and Alice Wallenberg stiftelse. The author is indebted to Mrs. M. Wahlström and E. Nowak for their valuable technical assistance.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1963

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Bauer, H. (1932). Die Feulgensche Nuklealfärbung in ihrer Anwendung auf cytologische Untersuchungen. Z. Zellforsch. 15, 225–47.Google Scholar
Bauer, H. (1933). Die wachsenden Oocytenkerne einiger Insekten in ihrem Verhalten zur Nuklealfärbung. Z. Zellforsch. 18, 254–98.CrossRefGoogle Scholar
Bayreuther, K. (1956). Die Oogenese der Tipuliden. Chromosoma, 7, 508–57.Google Scholar
Beermann, S. (1959). Chromatin-Diminution bei Copepoden. Chromosoma, 10, 504–14.Google Scholar
Bell, P. R. (1959). Deoxyribonucleic acid in eggs of the Polypodiaceous ferns. Nature, Lond., 184, 1664–5.Google Scholar
Bonnevie, K. (1901). Ueber Chromatindiminution bei Nematoden. Jena. Z. Naturw., 36, 275–88.Google Scholar
Brachet, J. (1929). Recherches sur le comportement de l'acide thymonucléique aux cours de l'oogénèse chez diverses espèces animales. Arch. Biol. 39, 677–97.Google Scholar
Brachet, J. (1933). Recherches sur la synthèse de l'acide thymonucléique pendant le development de l'oeuf d'oursin. Arch. Biol. 44, 519–76.Google Scholar
Chayen, J. (1960). The localization of deoxyribose nucleic acid in cells of the root meristem of Vicia faba. Exp. Cell. Res. 20, 150–71.Google Scholar
Cheissin, E. (1958). Cytologische Untersuchungen verschiedener Stadien des Lebenszyklus der Kaninchenococcidien, Eimeria intestinalis. Arch. Protistenk. 102, 265–90.Google Scholar
Fasske, E. (1957). Zur Darstellung der sauren Mukopolysaccharide im Bereich der Zwischensubstanz mesenchymaler Gewebe. Zbl. allg. Path. path. Anat. 97, 174–9.Google Scholar
Flemming, W. (1895). Über die Wirkung von Chromessigsäure auf Zellkerne. Arch. mikr. Anat. 45, 162–6.Google Scholar
Goldschmidt, R. & Lin, T. P. (1947). Chromatin diminution in Ascaris. Science, 105, 619–20.Google Scholar
Immers, J. (1957). Cytochemical studies of fertilization and first mitosis of the sea urchin egg. Exp. Cell. Res. 12, 145–53.Google Scholar
Krupko, S. & Denley, A. (1956). Deoxyribonucleic acid deficiency in the mature egg nucleus of Aloe darjana in South Africa. Nature, Lond., 177, 92–3.CrossRefGoogle Scholar
Lin, T. P. (1954). The chromosomal cycle in Parascaris equorum (Ascaris megalocephala): Oogenesis and diminution. Chromosoma, 6, 175–98.Google Scholar
Monné, L. (1935). Permeability of the nuclear membrane to vital stains. Proc. Soc. exp. Biol, N.Y., 32, 1197–9.CrossRefGoogle Scholar
Monné, L. (1945 a). On the induced crystal formation within the nucleus of the sea urchin egg. Ark. Zool. 36A, nr. 10, 112.Google Scholar
Monné, L. (1945 b). Investigations into the structure of the cytoplasm. Ark. Zool. 36A, nr. 23, 122.Google Scholar
Monné, L. (1949). Structural changes of the cell resulting from clotting and liquefaction. Ark. Zool. ser. 2, 1, nr 9, 250–70.Google Scholar
Monné, L. (1957). On the influence of hot trichloracetic acid on the staining properties of the exoplasms of various animals, particularly parasitic worms. Ark. Zool. ser. 2, 11, nr 1, 119.Google Scholar
Monné, L. (1959). On the formation of the egg envelopes and the early development of the lungworms Dictyocaulus viviparus, D. filaria and Metastrongylus elongatus. Ark. Zool. ser. 2, 12, nr 8, 99122.Google Scholar
Monné, L. & Slautterback, D. B. (1950 a). Differential staining of various polysaccharides of the sea urchin eggs. Exp. Cell. Res. 1, 477–91.Google Scholar
Monné, L. & Slautterback, D. B. (1950 b). The disappearance of the protoplasmic acidophilia upon deamination. Ark. Zool. ser. 2, 1, nr 27, 2030.Google Scholar
Monné, L. & Wicklund, E. (1947). The influence of merthiolate on the eggs of the sea urchin Psammechinus miliaris. Ark. Zool. 39A, nr 4, 112.Google Scholar
Pasteels, J. (1948). Recherches sur le cycle germinal chez l'Áscaris. Etude cytochimique des acides nucléiques dans l'oogénèse, la spermatogénèse et le développement chez Parascaris equorum Goeze. Arch. Biol. 59, 405–46.Google Scholar
Pattillo, W. H. & Becker, E. R. (1955). Cytochemistry of Eimeria brunetti and E. acervulina of the chicken. J. Morphol. 96, 6195.Google Scholar
Raven, Ch. P. V., Brink, J. M., Kamer, J. C., Miltenburg, J. A. & Sobels, F. H. (1950). Cytological and cytochemical investigations on the development of Sabellaria alveolata L. Verh. Kon. Nederl. Akad. Wetensch. 2, 47, 1–48.Google Scholar
Sassuchin, D. (1935). Zum Studium der Protisten- und Bakterienkerne. Arch. Protistenk. 84, 186–98.Google Scholar
Schneider, W. C. (1945). Phosphorus compounds in animal tissues. I. Extraction and estimation of desoxypentose nucleic acid and pentose nucleic acid. J. Biol. Chem. 161, 293303.CrossRefGoogle ScholarPubMed
Stefanelli, A. (1940). Il rapporto nucleo-plasmatico e la sintesi dell’ acido timonucleinico nello sviluppo. Ricerche sui Nematodi. Arch. Zool. (ital.) 28, 387400.Google Scholar
Stich, H. (1950). Histochemische Untersuchungen frühembryonaler Sonderungsprozesse normaler und zentrifugierter Eier von Cyclops viridis. J. Arch. Entwicklungsmech. 144, 364–80.Google Scholar
Urbani, E. (1950). La massa di Giardina dell’ oocite di Dytiscus marginalis L. Riv. Biol. 42, 413–42.Google Scholar
Walther, E. (1929). Entwicklungsgeschichtliche und zytologische Untersuchungen an einigen Nitellen. Arch. Klaus-Stif. VererbForsch. 4, 23121.Google Scholar
Walton, A. C. (1924). Studies on nematode gametogenesis. Z. Zell.- u. Gewebelehre, 1, 167–90.Google Scholar