Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-23T03:32:05.007Z Has data issue: false hasContentIssue false

Ocular toxoplasmosis in mice: comparison of two routes of infection

Published online by Cambridge University Press:  23 May 2005

R. C. TEDESCO
Affiliation:
Departamento de Ultra-estrutura e Biologia Celular, Laboratório de Biologia Estrutural do Instituto Oswaldo Cruz – Fundação Oswaldo Cruz, Avenida Brasil, 4365 CEP: 21045-900, Rio de Janeiro – RJ, Brasil Departamento de Morfologia, Disciplina de Anatomia Topográfica e Descritiva da Universidade Federal de São Paulo, Escola Paulista de Medicina, Rua Botucatu, 740 CEP 04023-900, São Paulo-SP, Brasil
R. L. SMITH
Affiliation:
Departamento de Morfologia, Disciplina de Anatomia Topográfica e Descritiva da Universidade Federal de São Paulo, Escola Paulista de Medicina, Rua Botucatu, 740 CEP 04023-900, São Paulo-SP, Brasil
S. CORTE-REAL
Affiliation:
Departamento de Ultra-estrutura e Biologia Celular, Laboratório de Biologia Estrutural do Instituto Oswaldo Cruz – Fundação Oswaldo Cruz, Avenida Brasil, 4365 CEP: 21045-900, Rio de Janeiro – RJ, Brasil
K. S. CALABRESE
Affiliation:
Departamento de Protozoologia, Laboratório de Imunomodulação do Instituto Oswaldo Cruz – Fundação Oswaldo Cruz Avenida Brasil, 4365 CEP: 21045-900, Rio de Janeiro – RJ, Brasil

Abstract

This paper aims to test the influence of route of infection (intravitreal and instillation) on the course of ocular toxoplasmosis in mice, using the Toxoplasma gondii Me-49 strain. All mice inoculated intravitreally or by instillation presented the same pattern of infection. Using either route, parasites were observed in the retinal vessel with the formation of a glial reaction in the inner plexiforme layer and discontinuity of the pigmented epithelium of the retina 7 days after infection. However, when the intravitreal route was used a more intense inflammatory infiltrate was observed in the retina. The results suggest that inoculation route remarkably influences the inflammatory pattern in ocular toxoplasmosis and that the instillation route should be preferentially used in experimental infections in the murine ocular model of infection by T. gondii, specially with small animals where there is extensive needle damage, which is not observed in the instillation route.

Type
Research Article
Copyright
© 2005 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Camargo, M. E., Leser, P. G. and Leser, W. S. P. ( 1976). Diagnostic information from seroloical tests in human toxoplasmosis. Revista do Instituto de Medicina Tropical de São Paulo 18, 215226.Google Scholar
Dubey, J. P., Lindsay, D. S. and Speer, C. A. ( 1998). Structures of Toxoplasma gondii tachyzoites, bradyzoites and sporozoites and biology and development of tissue cyst. Clinical of Microbiology Review 11, 267299.Google Scholar
Dutton, G. N. ( 1989). Toxoplasmic retinochoroiditis: a historical review and current concepts. Annals of the Academy of Medicine Singapore 18, 214221.Google Scholar
Frenkel, J. K. and Jacobs, L. ( 1958). Ocular toxoplasmosis: pathogenesis, diagnosis and treatment. AMA Archives of Ophthalmology 59, 260279.CrossRefGoogle Scholar
Freyre, A. ( 1995). Separation of toxoplasma cysts fron brain tissue and liberation of viable bradyzoites. Journal of Parasitology 81, 10081010.CrossRefGoogle Scholar
Garweg, J. G., Kuenzli, H. and Boehnke, M. ( 1998). Experimental ocular toxoplasmosis in navie and primed rabbits. Ophthalmology 212, 136141.Google Scholar
Gil, C. D., Mineo, J. R., Smith, R. L. and Oliani, S. M. ( 2002). Mast cell in the eyes of Callomys callosus (Rodentia: Cricetidea) infected by Toxoplasma gondii. Parasitology Research 88, 557562.CrossRefGoogle Scholar
Gormley, P. D., Pavesio, C. E., Luthert, P. and Lightman, S. ( 1999). Retinochoroiditis is induced by oral administration of Toxoplasma gondii cysts in the hamster model. Experimenthal Eye Research 68, 657661.CrossRefGoogle Scholar
Holland, G. N. ( 2004). Ocular toxoplasmosis: a global reassessment Part II: disease manifestations and management. American Journal of Ophthalmology 137, 117.CrossRefGoogle Scholar
Jankû, J. ( 1923). Pathogenesa a Pathologická Anatomie T. Zv. Vrozeneho Kolobomu lute kurny Oku Normál ne Velikém a Mikrophtalmickem s Nalezem Parasitu v Sitnici. Cas Lék Ces 62, 10211027.Google Scholar
Jacobs, L., Remington, J. S. and Melton, M. L. ( 1960). The resistance of the encysted from of Toxoplasma gondii. Journal of Parasitology 46, 1121.CrossRefGoogle Scholar
Lee, W. R., Hay, J., Hutchison, W. M., Dutton, G. N. and Siim, J. C. ( 1983). A murine model of congenital toxoplasmic retinochoroiditis. Acta Ophthalmologica 61, 818830.Google Scholar
Lynfield, R. and Guerina, N. G. ( 1997). Toxoplasmosis. Pediatrics in Review 18, 7583.CrossRefGoogle Scholar
Medawar, P. B. ( 1945). A second study of the behaviour and fate of skin homografts in rabbits. Journal of Anatomy 79, 157176.Google Scholar
Medawar, P. B. ( 1948). Immunity to homologous grafted skin. III. The fate of skin homografits transplanted to the brain, to subcutaneous tissue and to the anterior chamber of the eye. British Journal of Experimental Pathology 29, 5874.Google Scholar
O'Connor, G. R. ( 1983). Factors related to the initiation and recurrence of uveitis. XL Edward Jackson memorial lecture. American Journal of Ophthalmology 96, 577599.CrossRefGoogle Scholar
Ortega-Barria, E. and Boothroyd, J. C. ( 1999). A Toxoplasma lectin-like activity specific for sulfated polysaccharides is involved in host cell infection. Journal of Biological Chemistry 274, 12671276.CrossRefGoogle Scholar
Pavesio, C. E., Chiappino, M. L., Gormley, P., Setzer, P. Y. and Nichols, B. A. ( 1995). Acquired retinochoroiditis in hamsters inoculated with ME 49 strain Toxoplasma. Investigative Ophthalmology Visual Science 36, 21662175.Google Scholar
Popiel, I., Gold, M. C. and Booth, K. S. ( 1996). Quantification of Toxoplasma gondii bradyzoites. Journal of Parasitology 82, 330332.CrossRefGoogle Scholar
Smith, J. R. and Cunningham, E. T. ( 2002). Atypical presentations of ocular toxoplasmosis. Current Opinion in Ophthalmology 13, 387392.CrossRefGoogle Scholar
Sun, D., Enzmann, V., Lei, S., Sun, S. L., Kaplan, H. J. and Shao, H. ( 2003). Retinal pigment epithelial cells activate uveitogenic T cells when they express high levels of MHC class II molecules, but inhibit T cell activation when they express restricted levels. Journal of Neurology 144, 18.CrossRefGoogle Scholar
Tedesco, R. C. ( 2003). Alterações Morfológicas na Retina de Camundongos C57BL/6 Infectados com Toxoplasma gondii (Apicomplexa, Sarcocystidae). Tese de Doutorado. Departamento de Biologia Parasitária. Instituto Oswaldo Cruz – Fundação Osvaldo Cruz, Rio de Janeiro.
Tedesco, R. C., Smith, R. L., Corte-Real, S. and Calabrese, K. S. ( 2004). Ocular toxoplasmosis: the role of retinal pigment epithelium migration in infection. Parasitology Research 92, 467472.CrossRefGoogle Scholar
Wilder, H. C. ( 1952). Toxoplasma chorioretinitis in adults. Archives of Ophthalmology 48, 127136.CrossRefGoogle Scholar
Wolf, A., Cowen, D. and Paige, B. H. ( 1939). Human toxoplasmosis: occurrence in infants as an encephalomyelitis: verification by transmission to animals. Science 89, 226227.CrossRefGoogle Scholar
Yoshizumi, M. O. ( 1976). Experimental Toxoplasma retinitis. A light and electron microscopical study. Archives of Pathology and Laboratory Medicine 100, 487490.Google Scholar