Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-27T13:48:16.188Z Has data issue: false hasContentIssue false

Numerical taxonomy of Trypanozoon based on polymorphisms in a reduced range of enzymes

Published online by Cambridge University Press:  06 April 2009

J. R. Stevens
Affiliation:
Tsetse Research Laboratory, Department of Veterinary Medicine, University of Bristol, Langford House, Langford, Bristol BS18 7DU, UK
D. G. Godfrey
Affiliation:
Tsetse Research Laboratory, Department of Veterinary Medicine, University of Bristol, Langford House, Langford, Bristol BS18 7DU, UK

Summary

Numerical analyses of Trypanozoon taxonomy are presented, based on the isoenzyme data of Stevens et al. (1992). The previous study used a reduced range of enzymes compared with earlier work; the analyses indicate the value of this rationalized system. Both recently isolated trypanosome stocks and previously studied populations were included, allowing detailed comparison with earlier studies. Relationships between zymodemes were calculated with an improved similarity coefficient program, using Jaccard's coefficient (1908), and by Nei's method (1972). Dendrograms were constructed from the matrices produced with the group-average method. The groupings produced by both numerical methods were in close agreement, and the clusters of related principal zymodemes largely matched the species, subspecies and strain groups proposed by previous workers. Trypanozoon biochemical taxonomy is reviewed and the groupings reinforced by this study are: the mainly East African strain groups, busoga, zambezi, kakumbi, kiboko and sindo; T.b. gambiense and the bouaflé strain group from West Africa, and T. evansi; an intermediate bouaflé/busoga group was also recognized.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Avise, J. C. & Aquadro, C. (1982). A comparative summary of genetic distances in the vertebrates. Evolutionary Biology 15, 151–85.CrossRefGoogle Scholar
Le Blancq, S. M., Cibulskis, R. E. & Peters, W. (1986). Leishmania in the Old World: 5. Numerical analysis of isoenzyme data. Transactions of the Royal Society of Tropical Medicine and Hygiene 80, 517–24.CrossRefGoogle ScholarPubMed
Boid, R. (1988). Isoenzyme characterisation of 15 stocks of Trypanosoma evansi isolated from camels in the Sudan. Tropenmedizin und Parasitologie 39, 4550.Google ScholarPubMed
Borst, P., Fase-Fowler, F. & Gibson, W. C. (1981). Quantitation of genetic differences between Trypanosoma brucei gambiense, rhodesiense and brucei by restriction enzyme analysis of kinetoplast DNA. Molecular and Biochemical Parasitology 3, 117–31.CrossRefGoogle ScholarPubMed
Borst, P., Fase-Fowler, F. & Gibson, W. C. (1987). Kinetoplast DNA of Trypanosoma evansi. Molecular and Biochemical Parasitology 23, 31–8.CrossRefGoogle ScholarPubMed
Dukes, P., Kaukas, A., Hudson, K. M., Asonganyi, T. & Gashumba, J. K. (1989). A new method for isolating Trypanosoma brucei gambiense from sleeping sickness patients. Transactions of the Royal Society of Tropical Medicine and Hygiene 83, 636–9.CrossRefGoogle ScholarPubMed
Dunn, G. & Everitt, B. S. (1982). An Introduction to Mathematical Taxonomy. Cambridge: Cambridge University Press.Google Scholar
Gashumba, J. K., Baker, R. D. & Godfrey, D. G. (1988). Trypanosoma congolense: the distribution of enzymic variants in East and West Africa. Parasitology 96, 475–86.CrossRefGoogle ScholarPubMed
Gibson, W. C. (1986). Will the real Trypanosoma b. gambiense please stand up. Parasitology Today 2, 255–7.CrossRefGoogle ScholarPubMed
Gibson, W. C., Borst, P. & Fase-Fowler, F. (1985). Further analysis of intraspecific variation in Trypanosoma brucei using restriction site polymorphisms in the maxi-circle kinetoplast DNA. Molecular and Biochemical Parasitology 15, 2136.CrossRefGoogle ScholarPubMed
Gibson, W. C. & Gashumba, J. K. (1983). Isoenzyme characterization of some Trypanozoon stocks from a recent trypanosomiasis epidemic in Uganda. Transactions of the Royal Society of Tropical Medicine and Hygiene 77, 114–18.CrossRefGoogle ScholarPubMed
Gibson, W. C., Marshall, T. F., De, C. & Godfrey, D. G. (1980). Numerical analysis of enzyme polymorphism: a new approach to the epidemiology of trypanosomes of the subgenus Trypanozoon. Advances in Parasitology 18, 175246.CrossRefGoogle Scholar
Gibson, W., Mehlitz, D., Lanham, S. M. & Godfrey, D. G. (1978). The identification of Trypanosoma brucei gambiense in Liberian pigs by isoenzymes and by resistance to human plasma. Tropenmedizin und Parasitologie 29, 335–45.Google ScholarPubMed
Gibson, W. C. & Wellde, B. T. (1985). Characterization of Trypanozoon stocks from the South Nyanza sleeping sickness focus in Western Kenya. Transactions of the Royal Society of Tropical Medicine and Hygiene 79, 671–6.CrossRefGoogle ScholarPubMed
Gibson, W. C., Wilson, A. J. & Moloo, S. K. (1983). Characterization of Trypanosoma (Trypanozoon) evansi from camels in Kenya using isoenzyme electrophoresis. Research in Veterinary Science 34, 114–18.CrossRefGoogle ScholarPubMed
Godfrey, D. G., Baker, R. D., Rickman, L. R. & Mehlitz, D. (1990). The distribution, relationships and identification of enzymic variants within the subgenus Trypanozoon. Advances in Parasitology 29, 174.CrossRefGoogle ScholarPubMed
Godfrey, D. G. & Kilgour, V. (1976). Enzyme electrophoresis in characterizing the causative organism of Gambian trypanosomiasis. Transactions of the Royal Society of Tropical Medicine and Hygiene 70, 219–24.CrossRefGoogle ScholarPubMed
Godfrey, D. G., Scott, C. M., Gibson, W. C., Mehlitz, D. & Zillmann, U. (1987). Enzyme polymorphism and the identity of Trypanosoma brucei gambiense. Parasitology 94, 337–47.CrossRefGoogle ScholarPubMed
Hide, H., CattandP., LE P., LE, Ray, D., Barry, J. D. & Tait, A. (1990). The identification of Trypanosoma brucei subspecies using repetitive DNA sequences. Molecular and Biochemical Parasitology 39, 213–26.CrossRefGoogle ScholarPubMed
Jaccard, P. (1908). Nouvelles recherches sur la distribution florale. Bulletin de la Société Vaudoise de Science Naturelle 44, 223–70.Google Scholar
Kilgour, V. & Godfrey, D. G. (1973). Species-characteristic isoenzymes of two aminotransferases in trypanosomes. Nature, London 244, 6970.Google ScholarPubMed
King, M. C. & Wilson, A. C. (1975). Evolution at two levels in humans and chimpanzees. Science 188, 107–16.CrossRefGoogle ScholarPubMed
Lance, G. N. & Williams, W. T. (1967). A general theory of classificatory sorting strategies: I. Hierarchical systems. Computer Journal 9, 373–80.CrossRefGoogle Scholar
Lanham, S. M., Grendon, J. M., Miles, M. A., Povoa, M. M. & DE Souza, A. A. A. (1981). A comparison of electrophoretic methods for isoenzyme characterization of trypanosomatids. 1: Standard stocks of Trypanosoma cruzi zymodemes from north-east Brazil. Transactions of the Royal Society of Tropical Medicine and Hygiene 75, 742–50.CrossRefGoogle Scholar
Masiga, D. K. & Gibson, W. C. (1990). Specific probes for Trypanosoma (Trypanozoon) evansi based on kinetoplast DNA minicircles. Molecular and Biochemical Parasitology 40, 279–84.CrossRefGoogle ScholarPubMed
Mehlitz, D., Zillmann, U., Scott, C. M. & Godfrey, D. G. (1982). Epidemiological studies in the animal reservoir of gambiense sleeping sickness. Part III. Characterization of Trypanozoon stocks by isoenzymes and sensitivity to human serum. Tropenmedizin und Parasitologie 33, 113–18.Google ScholarPubMed
Mihok, S., Otieno, L. H. & Darji, N. (1990). Population genetics of Trypanosoma brucei and the epidemiology of human sleeping sickness in the Lambwe Valley, Kenya. Parasitology 100, 219–33.CrossRefGoogle ScholarPubMed
Nei, M. (1972). Genetic distance between populations. The American Naturalist 106, 283–92.CrossRefGoogle Scholar
Nei, M. (1987). Molecular Evolutionary Genetics. New York: Columbia University Press.CrossRefGoogle Scholar
Nei, M., Tajima, F. & Tateno, Y. (1983). Accuracy of estimated phylogenetic trees from molecular data. II. Gene frequency data. Journal of Molecular Evolution 19, 153–70.CrossRefGoogle ScholarPubMed
Paindavoine, P., Pays, E., Laurent, M., Geltmeyer, Y. LE, Ray, D., Mehlitz, D. & Steinert, M. (1986). The use of DNA hybridization and numerical taxonomy in determining relationships between Trypanosoma brucei stocks and subspecies. Parasitology 92, 3150.CrossRefGoogle ScholarPubMed
Paindavoine, P., Zampetti-Bosseler, F., Coquelet, H., Pays, E. & Steinert, M. (1989). Different allele frequencies in Trypanosoma brucei brucei and Trypanosoma brucei gambiense populations. Molecular and Biochemical Parasitology 32, 6172.CrossRefGoogle ScholarPubMed
Rioux, J. A., Lanotte, G., Serres, E., Pratlong, F., Bastien, P. & Perieres, J. (1990). Taxonomy of Leishmania. Use of isoenzymes. Suggestions for a new classification. Annales de Parasitologie Humaine et Comparée 65, 111–25.CrossRefGoogle ScholarPubMed
Sneath, P. H. A. & Sokal, R. R. (1973). Numerical Taxonomy. San Francisco: W. H. Freeman and Company.Google Scholar
Sokal, R. R. & Michener, C. D. (1958). A statistical method for evaluating systematic relationships. University of Kansas Scientific Bulletin 38, 1409–38.Google Scholar
Sourdis, J. & Krimbas, C. (1987). Accuracy of phylogenetic trees estimated from DNA sequence data. Molecular Biological Evolution 4, 159–66.Google ScholarPubMed
Stevens, J. R. & Cibulskis, R. E. (1990). Analysing isoenzyme band patterns using similarity coefficients: a personal computer program. Computer Methods and Programs in Biomedicine 33, 205–12.CrossRefGoogle ScholarPubMed
Stevens, J. R., Lanham, S. M., Allingham, R. & Gashumba, J. K. (1992). A more efficient identification of subspecies and strain groups in Trypanozoon by isoenzymes. Annals of Tropical Medicine and Parasitology (in the Press).CrossRefGoogle Scholar
Stevens, J. R., Nunes, V. L. B., Lanham, S. M. & Oshiro, E. T. (1989). Isoenzyme characterization of Trypanosoma evansi isolated from capybaras and dogs in Brazil. Acta Tropica 46, 213–22.CrossRefGoogle ScholarPubMed
Stout, D. L. & Shaw, C. R. (1974). Genetic distance among certain species of Mucor. Mycologia 66, 969–77.CrossRefGoogle ScholarPubMed
Tait, A., Babiker, E. A. & Le Ray, D. (1984). Enzyme variation in Trypanosoma brucei spp. I. Evidence for the subspeciation of Trypanosoma brucei gambiense. Parasitology 89, 311–26.CrossRefGoogle ScholarPubMed
Tait, A., Barry, J. D., Wink, R., Sanderson, A. & Crowe, J. S. (1985). Enzyme variation in Trypanosoma brucei spp. II. Evidence for T.b. rhodesiense being a set of variants of T.b. brucei. Parasitology 90, 89100.CrossRefGoogle Scholar
Thorpe, J. P. (1982). The molecular clock hypothesis: biochemical evolution, genetic differentiation and systematics. Annual Review of Ecological Systematics 13, 139–68.CrossRefGoogle Scholar
Tibayrenc, M., Kjellberg, F. & Ayala, F. J. (1990). A clonal theory of parasitic protozoa: the population structures of Entamoeba, Giardia, Leishmania, Naegleria, Plasmodium, Trichomonas, and Trypanosoma and their medical and taxonomical consequences. Proceedings of the National Academy of Sciences, USA 87, 2414–18.CrossRefGoogle ScholarPubMed
Tibayrenc, M., Ward, P., Moya, A. & Ayala, F. J. (1986). Natural populations of Trypanosoma cruzi, the agent of Chagas disease, have a complex multiclonal structure. Proceedings of the National Academy of Sciences, USA 83, 115–19.CrossRefGoogle ScholarPubMed
Truc, P. (1991). Apport de la génétique des populations à la taxonomie de Trypanosoma brucei et à l'épidémiologie de la Trypanosomiase Humaine en Afrique Centrale. Thèse, Université Montpellier II, France.Google Scholar
Ward, J. H. (1963). Hierarchical grouping to optimize an objective function. Journal of the American Statistical Association 58, 236–44.CrossRefGoogle Scholar
Whittam, T. S., Ochman, H. & Selander, R. K. (1983). Geographic components of linkage disequilibrium in natural populations of Escherichia coli. Molecular Biological Evolution 1, 6783.Google ScholarPubMed
Wyles, J. S., Kunkel, J. G. & Wilson, A. C. (1983). Birds, behavior and anatomical evolution. Proceedings of the National Academy of Sciences, USA 80, 4394–7.CrossRefGoogle ScholarPubMed