Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-23T04:17:34.542Z Has data issue: false hasContentIssue false

A novel triazolic naphthofuranquinone induces autophagy in reservosomes and impairment of mitosis in Trypanosoma cruzi

Published online by Cambridge University Press:  23 September 2011

M. C. FERNANDES
Affiliation:
Laboratório de Biologia Celular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, RJ 21040-360, Brazil
E. N. DA SILVA JR.
Affiliation:
Instituto de Ciências Exatas, Departamento de Química, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil
A. V. PINTO
Affiliation:
Núcleo de Pesquisas em Produtos Naturais, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21944–970, Brazil
S. L. DE CASTRO
Affiliation:
Laboratório de Biologia Celular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, RJ 21040-360, Brazil
R. F. S. MENNA-BARRETO*
Affiliation:
Laboratório de Biologia Celular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, RJ 21040-360, Brazil
*
*Corresponding author: Laboratório de Biologia Celular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, RJ 21040–360, Brazil. Fax: 00 55 21 2562 1432. E-mail: [email protected]

Summary

Chagas' disease, caused by the protozoan Trypanosoma cruzi, represents a serious health problem in Latin America, and the available chemotherapy, which is based on 2 nitro-derivatives, is not satisfactory. In folk medicine, natural products including naphthoquinones have been employed for the treatment of different parasitic diseases. In the pursuit of alternative drugs for Chagas' disease, we investigated the mechanism of action of the triazolic naphthoquinone (TN; 2,2-dimethyl-3-(4-phenyl-1H-1,2,3-triazol-1-yl)-2,3-dihydronaphtho[1,2-b]furan-4,5-dione), which is the most active compound against T. cruzi trypomastigotes among a series of naphthofuranquinones. TN was active against the 3 parasite forms producing a dose-dependent inhibitory effect. In epimastigotes, TN induced reservosome disruption, flagellar blebbing, Golgi disorganization, the presence of cytosolic concentric membrane structures and abnormal multiflagellar parasites. The treatment also led to the appearance of well-developed endoplasmic reticulum profiles surrounding organelles that associated with an increase in monodansylcadaverine labelling, suggesting autophagy as part of the TN mechanism of action. Interestingly, no ultrastructural damage was detected in the mitochondria of naphthoquinone-treated epimastigotes. Flow cytometric analysis demonstrated an impairment of mitosis, an increase in ROS production and the maintenance of mitochondrial membrane potential. TN could be a good starting point in the investigation of a chemotherapeutic approach for the treatment of Chagas' disease.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Abdel-Rahman, A. A. and Wada, T. (2009). Synthesis and antiviral evaluation of 5-(1,2,3-triazol-1-ylmethyl)uridine derivatives. Zeitschrift für Naturforschung C 64, 163166.CrossRefGoogle Scholar
Bera, A., Singh, S., Nagaraj, R. and Vaidya, T. (2003). Induction of autophagic cell death in Leishmania donovani by antimicrobial peptides. Molecular and Biochemical Parasitology 127, 2335.CrossRefGoogle ScholarPubMed
Brennand, A., Gualdrón-López, M., Coppens, I., Rigden, D. J., Ginger, M. L. and Michels, P. A. (2011). Autophagy in parasitic protists: unique features and drug targets. Molecular and Biochemical Parasitology 177, 8389.CrossRefGoogle ScholarPubMed
Coura, J. R. and de Castro, S. L. (2002). A critical review on Chagas´ disease chemotherapy. Memórias do Instituto Oswaldo Cruz 97, 324.CrossRefGoogle Scholar
Denninger, V., Koopmann, R., Muhammad, K., Barth, T., Bassarak, B., Schönfeld, C., Kilunga, B. K. and Duszenko, M. (2008). Kinetoplastida: model organisms for simple autophagic pathways? Methods in Enzymology 451, 373408.CrossRefGoogle ScholarPubMed
Dikalov, S., Griendling, K. K. and Harrison, D. G. (2007). Measurement of reactive oxygen species in cardiovascular studies. Hypertension 49, 717727.CrossRefGoogle ScholarPubMed
Docampo, R., De Souza, W., Cruz, F. S., Roitman, I., Cover, B. and Gutteridge, W. E. (1978). Ultrastructural alterations and peroxide formation induced by naphthoquinones in different stages of Trypanosoma cruzi. Zeitschrift für Parasitenkunde 57, 189198.CrossRefGoogle ScholarPubMed
Duszenko, M., Ginger, M. L., Brennand, A., Gualdrón-López, M., Colombo, M. I., Coombs, G. H., Coppens, I., Jayabalasingham, B., Langsley, G., de Castro, S. L., Menna-Barreto, R., Mottram, J. C., Navarro, M., Rigden, D. J., Romano, P. S., Stoka, V., Turk, B. and Michels, P. A. (2011). Autophagy in protists. Autophagy 7, 127158.CrossRefGoogle ScholarPubMed
Ferreira, S. B., Costa, M. S., Boechat, N., Bezerra, R. J., Genestra, M. S., Canto-Cavalheiro, M. M., Kover, W. B. and Ferreira, V. F. (2007). Synthesis and evaluation of new difluoromethyl azoles as antileishmanial agents. European Journal of Medicinal Chemistry 42, 13881395.CrossRefGoogle ScholarPubMed
Hazra, B., das Sarma, M. and Sanyal, U. (2004). Separation methods of quinonoid constituents of plants used in Oriental traditional medicines. Journal of Chromatography B 812, 259275.CrossRefGoogle ScholarPubMed
Holla, B. S., Mahalinga, M., Karthikeyan, M. S., Poojary, B., Akberali, P. M. and Kumari, N. S. (2005). Synthesis, characterization and antimicrobial activity of some substituted 1,2,3-triazoles. European Journal of Medicinal Chemistry 40, 11731178.CrossRefGoogle Scholar
Irigoin, F., Cibils, L., Comini, M. A., Wilkinson, S. R., Flohe, L. and Radi, R. (2008). Insights into the redox biology of Trypanosoma cruzi: Trypanothione metabolism and oxidant detoxification. Free Radical Biology and Medicine 45, 733742.CrossRefGoogle ScholarPubMed
Jordan, M. A. and Wilson, L. (1999). The use and action of drugs in analysing mitosis. Methods in Cell Biology 61, 267295.CrossRefGoogle Scholar
Klionsky, D. J., Cregg, J. M., Dunn, W. A. Jr., Emr, S. D., Sakai, Y., Sandoval, I. V., Sibirny, A., Subramani, S., Thumm, M., Veenhuis, M. and Ohsumi, Y. (2003). A unified nomenclature for yeast autophagy-related genes. Developmental Cell 5, 539545.CrossRefGoogle ScholarPubMed
Lopes, J. N., Cruz, F. S., Docampo, R., Vasconcellos, M. E., Sampaio, M. C., Pinto, A. V. and Gilbert, B. (1978). In vitro and in vivo evaluation of the toxicity of 1,4-naphthoquinone and 1,2-naphthoquinone derivatives against Trypanosoma cruzi. Annals of Tropical Medicine and Parasitology 72, 523531.CrossRefGoogle Scholar
Menna-Barreto, R. F., Henriques-Pons, A., Pinto, A. V., Morgado-Diaz, J. A., Soares, M. J. and DeCastro, S. L. (2005). Effect of a beta-lapachone-derived naphthoimidazole on Trypanosoma cruzi: identification of target organelles. Journal of Antimicrobial Chemotherapy 56, 10341041.CrossRefGoogle ScholarPubMed
Menna-Barreto, R. F., Corrêa, J. R., Cascabulho, C. M., Fernandes, M. C., Pinto, A. V., Soares, M. J. and de Castro, S. L. N. (2009 c). Naphthoimidazoles promote different death phenotypes in Trypanosoma cruzi. Parasitology 136, 499510.CrossRefGoogle ScholarPubMed
Menna-Barreto, R. F. S., Corrêa, J. R., Pinto, A. V., Soares, M. J. and de Castro, S. L. (2007). Mitochondrial disruption and DNA fragmentation in Trypanosoma cruzi induced by naphthoimidazoles synthesized from β-lapachone. Parasitology Research 101, 895905.CrossRefGoogle ScholarPubMed
Menna-Barreto, R. F. S., Goncalves, R. L., Costa, E. M., Silva, R. S., Pinto, A. V., Oliveira, M. F. and de Castro, S. L. (2009 a). The effects on Trypanosoma cruzi of novel synthetic naphthoquinones are mediated by mitochondrial dysfunction. Free Radicals and Biology Medicine 47, 644653.CrossRefGoogle ScholarPubMed
Menna-Barreto, R. F., Salomão, K., Dantas, A. P., Santa-Rita, R. M., Soares, M. J., Barbosa, H. S. and de Castro, S. L. (2009 b). Different cell death pathways induced by drugs in Trypanosoma cruzi: an ultrastructural study. Micron 40, 157168.CrossRefGoogle ScholarPubMed
Mosmann, T. (1983). Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. Journal of Immunological Methods 65, 5563.CrossRefGoogle ScholarPubMed
Moura, K. C. G., Emery, F. S., Neves-Pinto, C., Pinto, M. C. F. R., Dantas, A. P., Salomão, K., de Castro, S. L. and Pinto, A. V. (2001). Synthesis and trypanocidal activity of naphthoquinones isolated from Tabebuia and heterocyclic derivatives: a review from an interdisciplinary study. Journal of the Brazilian Chemical Society 12, 325338.CrossRefGoogle Scholar
Moura, K. C. G., Salomão, K., Menna-Barreto, R. F. S., Emery, F. S., Pinto, M. C. F. R., Pinto, A. V. and de Castro, S. L. (2004). Studies on the trypanocidal activity of semi-synthetic pyran[b-4,3]naphtho[1,2-d]imidazoles from β-lapachone. European Journal of Medicinal Chemistry 39, 639645.CrossRefGoogle ScholarPubMed
Neves-Pinto, C., Dantas, A. P., De Moura, K. C., Emery, F. S., Polequevitch, P. F., Pinto, M. C. F. R., de Castro, S. L. and Pinto, A. V. (2000). Chemical reactivity studies with naphthoquinones from Tabebuia with anti-trypanosomal efficacy. Arzneimittel-Forschung 50, 11201128.Google Scholar
Pinto, A. V. and de Castro, S. L. (2009). The trypanocidal activity of naphthoquinones: a review. Molecules 14, 45704590.CrossRefGoogle ScholarPubMed
Pinto, A. V., Menna-Barreto, R. F. S. and de Castro, S. L. (2007). Naphthoquinones isolated from Tabebuia: a review about the synthesis of heterocyclic derivatives, screening against Trypanosoma cruzi and correlation structure-trypanocidal activity. In Phytomedicines. Vol. 16. (ed. Govil, J. N.), pp. 112127. Studium Press, Houston, Texas, USA.Google Scholar
Pinto, A. V., Pinto, C. N., Pinto, M. C., Rita, R. S., Pezzella, C. A. and de Castro, S. L. (1997). Trypanocidal activity of synthetic heterocyclic derivatives of active quinines from Tabebuia sp. Arzneimittel-Forschung 47, 7479.Google Scholar
Rassi, A. Jr., Rassi, A. and Marin-Neto, J. A. (2010). Chagas disease. Lancet 375, 13881402.CrossRefGoogle ScholarPubMed
Reggiori, F. and Klionsky, D. J. (2002). Autophagy in the eukaryotic cell. Eukaryotic Cell 1, 1121.CrossRefGoogle ScholarPubMed
Robinson, K. M., Janes, M. S. and Beckman, J. S. (2008). The selective detection of mitochondrial superoxide by live cell imaging. Nature Protocols 3, 941947.CrossRefGoogle ScholarPubMed
Salas, C. O., Faúndez, M., Morello, A., Maya, J. D. and Tapia, R. A. (2011). Natural and synthetic naphthoquinones active against Trypanosoma cruzi: an initial step towards new drugs for chagas' disease. Current Medicinal Chemistry 18, 144161.CrossRefGoogle ScholarPubMed
Sant'Anna, C., Parussini, F., Lourenço, D., de Souza, W., Cazzulo, J. J. and Cunha-e-Silva, N. L. (2008). All Trypanosoma cruzi developmental forms present lysosome-related organelles. Histochemistry and Cell Biology 130, 11871198.CrossRefGoogle ScholarPubMed
Schmunis, G. A. (2007). Epidemiology of Chagas´ disease in non-endemic countries: the role of international migration. Memórias do Instituto Oswaldo Cruz 1, 7585.CrossRefGoogle Scholar
Silva, E. N. Jr., Menna-Barreto, R. F. S., Pinto, M. C. F. R., Silva, R. S. F., Teixeira, D. V., Souza, M. C. B. V., de Simone, C. A., de Castro, S. L., Ferreira, V. F. and Pinto, A. V. (2008 a). Naphthoquinoidal [1,2,3]-triazole, a new structural moiety active against Trypanosoma cruzi. European Journal of Medicinal Chemistry 43, 17741780.CrossRefGoogle ScholarPubMed
Silva, E. N. Jr., Souza, M. C. B. V., Fernandes, M. C., Menna-Barreto, R. F. S., Pinto, M. C. F. R., Lopes, F. A., Simone, C. A., Andrade, C. K., Pinto, A. V., Ferreira, V. F. and de Castro, S. L. (2008 b). Synthesis and anti-Trypanosoma cruzi activity of derivatives from nor-lapachones and lapachones. Bioorganic &Medicinal Chemistry Letters 16, 50305038.Google Scholar
Silva, R. S. F., Costa, E. M., Trindade, U. L. T., Teixeira, D. V., Pinto, M. C. F. R., Santos, G. L., Malta, V. R. S., de Simone, C. A., Pinto, A. V. and de Castro, S. L. (2006). Synthesis of naphthofuranquinones with activity against Trypanosoma cruzi. European Journal of Medicinal Chemistry 41, 526530.CrossRefGoogle ScholarPubMed
Soeiro, M. N. C. and de Castro, S. L. (2011). Screening of potential anti-Trypanosoma cruzi candidates: in vitro and in vivo studies. Open Medicinal Chemistry Journal 5, 2130.CrossRefGoogle ScholarPubMed
Soeiro, M. N. and de Castro, S. L. (2009). Trypanosoma cruzi targets for new chemotherapeutic approaches. Expert Opinion on Therapeutic Targets 13, 105121.CrossRefGoogle ScholarPubMed
Urbina, J. A. (2010). Specific chemotherapy of Chagas disease: relevance, current limitations and new approaches. Acta Tropica 115, 5568.CrossRefGoogle ScholarPubMed
Uzcátegui, N. L., Denninger, V., Merkel, P., Schoenfeld, C., Figarella, K. and Duszenko, M. (2007). Dihydroxyacetone induced autophagy in African trypanosomes. Autophagy 3, 626629.CrossRefGoogle ScholarPubMed
Vaidian, A. K., Weiss, L. M. and Tanowitz, H. B. (2004). Chagas' disease and AIDS. Kinetoplastid Biology Disease 13, 2.CrossRefGoogle Scholar
Vickerman, K. and Tetley, L. (1977). Recent ultrastructural studies on trypanosomes. Annals of Belgian Society of Tropical Medicine 57, 441457.Google ScholarPubMed
Viegas-Jr, C., Danuello, A., Bolzani, V. S., Barreiro, E. J. and Fraga, C. A. M. (2007). Molecular hybridization: a useful tool in the design of new drug prototypes. Current Medicinal Chemistry 14, 18291852.Google Scholar
Waller, R. F. and McConville, M. J. (2002). Developmental changes in lysosome morphology and function Leishmania parasites. International Journal for Parasitology 32, 14351445.CrossRefGoogle ScholarPubMed
Supplementary material: PDF

Fernandes Certificate of English Editing

Fernandes Certificate of English Editing

Download Fernandes Certificate of English Editing(PDF)
PDF 120.1 KB